本文转载于https://www.cnblogs.com/zsq259/p/11602175.html
Miller-Rabin
事先声明,因为菜鸡Hastin知识水平有限,因此语言可能不是特别规范,仅供理解.
step 0
问一个数\(p\)是否为质数,\(p<=10^{18}\).
一个简单暴力的办法是\(O( \sqrt{n})\)枚举约数.
然而显然会炸.
于是我们就有了Miller-Rabin.
step 1
首先了解一下费马小定理:
若\(p\)为质数,则对于\(a\in[1,p-1]\)有\(a^{p}\equiv a(Mod\) \(p)\)
那么就有\(a^{p-1} \equiv 1( Mod\) \(p)\)
下面我们用数学归纳法来证明一下费马小定理:
显然\(a=1\)时结论成立,
若\(a=n\)时结论成立,
当\(a=n+1\)时,有
\((n+1)^p\)\(=\sum_{i=0}^{p}C_{p}^{i}n^{p-i}\)(二项式定理)
那么除了\(n^{p}\)和\(1\)这两项外,
其它的都有一个系数\(C_{p}^{i},i\in[1,p-1]\),所以都能被\(p\)整除.
而\(n^p\equiv n(Mod\) \(p)\),
所以\((n+1)^{p}\equiv n+1(Mod\) \(p)\),结论成立.
所以回到正题,如果对于一个数\(p\),存在\(a \in [1,p-1]\),\(a^{p-1}\not\equiv1(Mod\) \(p)\),则\(p\)一定不是质数.
然而仍然有一些数能够逃掉这种检测,
于是就有了
step 2
二次探测!
对于一个质数\(p\),若\(a \in[1,p-1]\),且\(a^2\equiv1(Mod\) \(p)\),则\(a=1\)或\(a=p-1\).
证明:
若\(a^2\equiv1(Mod\) \(p)\),则\(a^2-1\equiv 0(Mod\) \(p)\)
即\(p|(a+1)(a-1)\).
因为\(p\)为质数,且\(a\in [1,p-1]\),所以只有当\(a=1\)或\(a=p-1\)时上式才成立.
所以反过来想当\(a\)等于其它数时,\(p\)就不是质数了.
step 3
下面再来讲一下具体的实现.
首先大的思路是费马小定理,在中间用二次探测判定.
对于要判定的数\(p\),
设\(u=p-1\),则根据费马小定理有\(a^u\equiv 1(Mod\) \(p)\),\(a\in [1,p-1]\).
然后把\(u\)写成\(d*2^n\)的形式,也就是\((((d^2)^2)^2)^{2...}\)(n个2)
那么从\(d^2\)开始用二次探测判定,
最后再用费马小定理判定就行了.
而时间复杂度是\(O(log_{ \tiny 2}\) \(p)\).
并且一次的失误率是\(\frac{1}{4}\),
那么\(T\)次测试的失误率就是\(4^{-T}\),时间复杂度为\(O(Tlog_{\tiny 2}p)\),能够接受.
并且如果\(n<2^{64}\),只用选取\(a=2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37\)测试即可.
code:(似乎要开int128)
#include <iostream>
#include <cstdio>
#include <cstring>
#define int __int128
#define fre(x) freopen(x".in","r",stdin),freopen(x".out","w",stdout)
using namespace std;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
}
int p[101]={2,3,5,7,11,13,17,19,23,29,31,37};
int T,n,tot=12;
inline int fpow(int a,int b,int p){
int ret=1;
for(;b;a=a*a%p,b>>=1) if(b&1) ret=ret*a%p;
return ret;
}
inline bool Miller_Rabin(int n){
if(n<=2){
if(n==2) return 1;
return 0;
}
int u=n-1;
while(!(u%2)) u>>=1;
int d=u;
for(int i=1;i<tot&&p[i]<n;i++){
int x=p[i];u=d;x=fpow(x,u,n);
while(u<n){
int y=fpow(x,2,n);
if(y==1&&x!=1&&x!=n-1) return 0;
x=y;u<<=1;
}
if(x!=1) return 0;
}
return 1;
}
signed main(){
T=read();
while(T--){
n=read();
if(Miller_Rabin(n)) puts("Yes");
else puts("No");
}
return 0;
}