我有代码可以在聚类后计算平方误差的集合和内,而我主要从Spark mllib源代码中获取代码。
当我使用spark API运行类似代码时,它将在许多不同的(分布式)作业中运行并成功运行。当我运行它的代码(应该与Spark代码做同样的事情)时,我得到了堆栈溢出错误。有什么想法吗?
这是代码:
import java.util.Arrays
import org.apache.spark.mllib.linalg.{Vectors, Vector}
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.rdd.RDD
import org.apache.spark.api.java.JavaRDD
import breeze.linalg.{axpy => brzAxpy, inv, svd => brzSvd, DenseMatrix => BDM, DenseVector => BDV,
MatrixSingularException, SparseVector => BSV, CSCMatrix => BSM, Matrix => BM}
val EPSILON = {
var eps = 1.0
while ((1.0 + (eps / 2.0)) != 1.0) {
eps /= 2.0
}
eps
}
def dot(x: Vector, y: Vector): Double = {
require(x.size == y.size,
"BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
" x.size = " + x.size + ", y.size = " + y.size)
(x, y) match {
case (dx: DenseVector, dy: DenseVector) =>
dot(dx, dy)
case (sx: SparseVector, dy: DenseVector) =>
dot(sx, dy)
case (dx: DenseVector, sy: SparseVector) =>
dot(sy, dx)
case (sx: SparseVector, sy: SparseVector) =>
dot(sx, sy)
case _ =>
throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
}
}
def fastSquaredDistance(
v1: Vector,
norm1: Double,
v2: Vector,
norm2: Double,
precision: Double = 1e-6): Double = {
val n = v1.size
require(v2.size == n)
require(norm1 >= 0.0 && norm2 >= 0.0)
val sumSquaredNorm = norm1 * norm1 + norm2 * norm2
val normDiff = norm1 - norm2
var sqDist = 0.0
/*
* The relative error is
* <pre>
* EPSILON * ( \|a\|_2^2 + \|b\\_2^2 + 2 |a^T b|) / ( \|a - b\|_2^2 ),
* </pre>
* which is bounded by
* <pre>
* 2.0 * EPSILON * ( \|a\|_2^2 + \|b\|_2^2 ) / ( (\|a\|_2 - \|b\|_2)^2 ).
* </pre>
* The bound doesn't need the inner product, so we can use it as a sufficient condition to
* check quickly whether the inner product approach is accurate.
*/
val precisionBound1 = 2.0 * EPSILON * sumSquaredNorm / (normDiff * normDiff + EPSILON)
if (precisionBound1 < precision) {
sqDist = sumSquaredNorm - 2.0 * dot(v1, v2)
} else if (v1.isInstanceOf[SparseVector] || v2.isInstanceOf[SparseVector]) {
val dotValue = dot(v1, v2)
sqDist = math.max(sumSquaredNorm - 2.0 * dotValue, 0.0)
val precisionBound2 = EPSILON * (sumSquaredNorm + 2.0 * math.abs(dotValue)) /
(sqDist + EPSILON)
if (precisionBound2 > precision) {
sqDist = Vectors.sqdist(v1, v2)
}
} else {
sqDist = Vectors.sqdist(v1, v2)
}
sqDist
}
def findClosest(
centers: TraversableOnce[Vector],
point: Vector): (Int, Double) = {
var bestDistance = Double.PositiveInfinity
var bestIndex = 0
var i = 0
centers.foreach { center =>
// Since `\|a - b\| \geq |\|a\| - \|b\||`, we can use this lower bound to avoid unnecessary
// distance computation.
var lowerBoundOfSqDist = Vectors.norm(center, 2.0) - Vectors.norm(point, 2.0)
lowerBoundOfSqDist = lowerBoundOfSqDist * lowerBoundOfSqDist
if (lowerBoundOfSqDist < bestDistance) {
val distance: Double = fastSquaredDistance(center, Vectors.norm(center, 2.0), point, Vectors.norm(point, 2.0))
if (distance < bestDistance) {
bestDistance = distance
bestIndex = i
}
}
i += 1
}
(bestIndex, bestDistance)
}
def pointCost(
centers: TraversableOnce[Vector],
point: Vector): Double =
findClosest(centers, point)._2
def clusterCentersIter: Iterable[Vector] =
clusterCenters.map(p => p)
def computeCostZep(indata: RDD[Vector]): Double = {
val bcCenters = indata.context.broadcast(clusterCenters)
indata.map(p => pointCost(bcCenters.value, p)).sum()
}
computeCostZep(projectedData)
我相信我正在使用所有相同的并行化作业作为spark,但是对我来说不起作用。关于分发/帮助我的代码的任何建议,看看为什么我的代码中会发生内存溢出,这将非常有帮助
这是一个非常类似spark的源代码链接:
KMeansModel和KMeans
这是运行良好的代码:
val clusters = KMeans.train(projectedData, numClusters, numIterations)
val clusterCenters = clusters.clusterCenters
// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(projectedData)
println("Within Set Sum of Squared Errors = " + WSSSE)
错误输出如下:
org.apache.spark.SparkException:由于阶段失败而导致作业中止:94.0阶段中的任务1失败了4次,最近一次失败:94.0阶段中的任务1.3丢失(TID 37663,ip-172-31-13-209.ec2。内部):java.lang.StackOverflowError at $ iwC $$ iwC $$ iwC $$ iwC $ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $ iwC $$$$$$ c57ec8bf9b0d5f6161b97741d596ff0 $$ $$ wC $$ iwC $ iwC $$ iwC $ iwC $$ iwC $$ iwC $ iwC $ iwC $$ iwC $$ iwC $$ iwC $ iwC $$ iwC $$ iwC $$ iwC $$ iwC.dot(:226)at $ iwC $$ iwC $ iwC $$ iwC $$ iwC $ iwC $ iwC $$ iwC $$ iwC $ iwC $$ iwC $$$$$ c57ec8bf9b0d5f6161b97741d596ff0 $$$ $ wC $$ iwC $ iwC $ iwC $$ iwC $ iwC $$ iwC $ iwC $ iwC $ iwC $$ iwC $ iwC $ iwC $ iwC $$ iwC $ iwC $ iwC $ .dot(:226)
...
然后下来:
驱动程序堆栈跟踪:org.apache.spark.scheduler.DAGScheduler $$ anonfun $ abortStage $ 1在org.apache.spark.scheduler.DAGScheduler.org $ apache $ spark $ scheduler $ DAGScheduler $$ failJobAndIndependentStages(DAGScheduler.scala:1431)处。在org.apache.spark.scheduler.DAGScheduler $$ anonfun $ abortStage $ 1.apply(DAGScheduler.scala:1418)处应用(DAGScheduler.scala:1419)在scala.collection.mutable.ResizableArray $ class.foreach(ResizableArray.scala: 59)在org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)的scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)在org.apache.spark.scheduler.DAGScheduler $$ org.apache.spark.scheduler.DAGScheduler $$ anonfun $ handleTaskSetFailed $ 1.apply(DAGScheduler.scala:799)上的anonfun $ handleTaskSetFailed $ 1.apply(DAGScheduler.scala:799)在scala.Option.foreach(Option.scala:236) ),位于org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.org)上的org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)。 scala:1640)位于org.apache.spark.org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599),org.org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)位于org.apache.spark。 org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)上的.EventLoop $$ anon $ 1.run(EventLoop.scala:48)在org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) )的org.apache.spark.SparkContext.runJob(SparkContext.scala:1952)的org.apache.spark.rdd.RDD $$ anonfun $ fold $ 1.apply(RDD.scala:1088)的org.apache.spark。 org.apache.spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:111)的rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:150)在org.apache.spark.rdd.RDD.withScope(RDD.scala): 316),位于org.apache.spark.rdd.RDD.fold(RDD.scala:1082),位于org.apache.spark.rdd.DoubleRDDFunctions $$ anonfun $ sum $ 1.apply $ mcD $ sp(DoubleRDDFunctions.scala:34)在org.apache.spark.rdd.DoubleRDDFunctions $$ anonfun $ sum $ 1.apply(DoubleRDDFunctions.scala:34)在o rg.apache.spark.rdd.DoubleRDDFunctions $$ anonfun $ sum $ 1.apply(DoubleRDDFunctions.scala:34)在org.apache.spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:150)在org.apache.spark位于org.apache.spark.rdd.RDD.RDD.withScope(RDD.scala:316)的.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:111),位于org.apache.spark.rdd.DoubleRDDFunctions.sum(DoubleRDDFunctions.scala: 33)
最佳答案
似乎很简单:正在发生什么:您在这里递归调用dot
方法:
def dot(x: Vector, y: Vector): Double = {
require(x.size == y.size,
"BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
" x.size = " + x.size + ", y.size = " + y.size)
(x, y) match {
case (dx: DenseVector, dy: DenseVector) =>
dot(dx, dy)
case (sx: SparseVector, dy: DenseVector) =>
dot(sx, dy)
case (dx: DenseVector, sy: SparseVector) =>
dot(sy, dx)
case (sx: SparseVector, sy: SparseVector) =>
dot(sx, sy)
case _ =>
throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
}
}
后续对
dot
的递归调用与前者具有相同的参数-因此,递归永远不会得出结论。stacktrace也会告诉您-注意位置在点方法中:
$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $ iwC $$ iwC $$ iwC $$ iwC $ iwC $$ iwC $$$$$ c57ec8bf9b0d5f6161b97741d596ff0 $$ w $$ iwC $$ iwC $ iwC $ iwC $ iwC $$ iwC $ iwC $ iwC $ iwC $ iwC $$ iwC $ iwC $ iwC $ iwC $ iwC $$ iwC.dot (:226)在