嘿StackOverflowers!
我遇到了一个问题。
我已经将PyCharm设置为通过SSH连接与(自然)VM连接。
但是,当我尝试运行spark session (spark = SparkSession.builder.getOrCreate())时,databricks-connect在错误的文件夹中搜索.databricks-connect文件,并给我以下错误:
Caused by: java.lang.RuntimeException: Config file /root/.databricks-connect not found. Please run
databricks-connect配置 to accept the end user license agreement and configure Databricks Connect. A copy of the EULA is provided below: Copyright (2018) Databricks, Inc.
以及完整的错误+一些警告。20/07/10 17:23:05 WARN Utils: Your hostname, george resolves to a loopback address: 127.0.0.1; using 10.0.0.4 instead (on interface eth0)
20/07/10 17:23:05 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
20/07/10 17:23:05 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Traceback (most recent call last):
File "/anaconda/envs/py37/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3331, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-2-23fe18298795>", line 1, in <module>
runfile('/home/azureuser/code/model/check_vm.py')
File "/home/azureuser/.pycharm_helpers/pydev/_pydev_bundle/pydev_umd.py", line 197, in runfile
pydev_imports.execfile(filename, global_vars, local_vars) # execute the script
File "/home/azureuser/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/home/azureuser/code/model/check_vm.py", line 13, in <module>
spark = SparkSession.builder.getOrCreate()
File "/anaconda/envs/py37/lib/python3.7/site-packages/pyspark/sql/session.py", line 185, in getOrCreate
sc = SparkContext.getOrCreate(sparkConf)
File "/anaconda/envs/py37/lib/python3.7/site-packages/pyspark/context.py", line 373, in getOrCreate
SparkContext(conf=conf or SparkConf())
File "/anaconda/envs/py37/lib/python3.7/site-packages/pyspark/context.py", line 137, in __init__
conf, jsc, profiler_cls)
File "/anaconda/envs/py37/lib/python3.7/site-packages/pyspark/context.py", line 199, in _do_init
self._jsc = jsc or self._initialize_context(self._conf._jconf)
File "/anaconda/envs/py37/lib/python3.7/site-packages/pyspark/context.py", line 312, in _initialize_context
return self._jvm.JavaSparkContext(jconf)
File "/anaconda/envs/py37/lib/python3.7/site-packages/py4j/java_gateway.py", line 1525, in __call__
answer, self._gateway_client, None, self._fqn)
File "/anaconda/envs/py37/lib/python3.7/site-packages/py4j/protocol.py", line 328, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
: java.lang.ExceptionInInitializerError
at org.apache.spark.SparkContext.<init>(SparkContext.scala:99)
at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:61)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
at py4j.Gateway.invoke(Gateway.java:250)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:251)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: Config file /root/.databricks-connect not found. Please run `databricks-connect configure` to accept the end user license agreement and configure Databricks Connect. A copy of the EULA is provided below: Copyright (2018) Databricks, Inc.
This library (the "Software") may not be used except in connection with the Licensee's use of the Databricks Platform Services pursuant to an Agreement (defined below) between Licensee (defined below) and Databricks, Inc. ("Databricks"). This Software shall be deemed part of the “Subscription Services” under the Agreement, or if the Agreement does not define Subscription Services, then the term in such Agreement that refers to the applicable Databricks Platform Services (as defined below) shall be substituted herein for “Subscription Services.” Licensee's use of the Software must comply at all times with any restrictions applicable to the Subscription Services, generally, and must be used in accordance with any applicable documentation. If you have not agreed to an Agreement or otherwise do not agree to these terms, you may not use the Software. This license terminates automatically upon the termination of the Agreement or Licensee's breach of these terms.
Agreement: the agreement between Databricks and Licensee governing the use of the Databricks Platform Services, which shall be, with respect to Databricks, the Databricks Terms of Service located at www.databricks.com/termsofservice, and with respect to Databricks Community Edition, the Community Edition Terms of Service located at www.databricks.com/ce-termsofuse, in each case unless Licensee has entered into a separate written agreement with Databricks governing the use of the applicable Databricks Platform Services. Databricks Platform Services: the Databricks services or the Databricks Community Edition services, according to where the Software is used.
Licensee: the user of the Software, or, if the Software is being used on behalf of a company, the company.
To accept this agreement and start using Databricks Connect, run `databricks-connect configure` in a shell.
at com.databricks.spark.util.DatabricksConnectConf$.checkEula(DatabricksConnectConf.scala:41)
at org.apache.spark.SparkContext$.<init>(SparkContext.scala:2679)
at org.apache.spark.SparkContext$.<clinit>(SparkContext.scala)
... 13 more
但是,我没有对该文件夹的访问权限,因此无法将databricks连接文件放到该文件夹中。同样奇怪的是,如果我在以下位置运行:Pycharm-> ssh terminal->激活conda env-> python以下
这是一种方法:
1. Point out to java where the databricks-connect file is
2. Configure databricks-connect in another way throughout the script or enviromental variables inside pycharm
3. Other way?
or do I miss something?
最佳答案
This似乎是如何完成您想要的工作的正式教程(即databricks连接)。
您很可能是使用了错误的.databricks-connect文件版本。
您需要使用Java 8而不是11,Databricks Runtime 5.5 LTS或Databricks Runtime 6.1-6.6,并且您的python版本在两端应相同。
他们提供的步骤如下:
conda create --name dbconnect python=3.5
pip uninstall pyspark
pip install -U databricks-connect==5.5.* # or 6.*.* to match your cluster version. 6.1-6.6 are supported
然后,您需要url, token ,群集ID,组织ID和端口。最后在终端上运行以下命令:databricks-connect configure
databricks-connect test
在那之后,还有更多工作要做,但是有望成功。请记住,您需要确保所使用的所有程序都兼容。完成所有设置后,请尝试设置ide(pycharm)以使其正常工作。