我首先使用resnet-50层在我的数据集上进行了培训,使用了以下方法:
model_r50 = ResNet50(weights='imagenet', include_top=False)
model_r50.summary()
input_layer = Input(shape=(img_width,img_height,3),name = 'image_input')
output_r50 = model_r50(input_layer)
fl = Flatten(name='flatten')(output_r50)
dense = Dense(1024, activation='relu', name='fc1')(fl)
drop = Dropout(0.5, name='drop')(dense)
pred = Dense(nb_classes, activation='softmax', name='predictions')(drop)
fine_model = Model(outputs=pred,inputs=input_layer)
for layer in model_r50.layers:
layer.trainable = False
print layer
fine_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
fine_model.summary()
然后,我尝试使用以下方法对其进行微调,使其具有未冻结的层:
model_r50 = ResNet50(weights='imagenet', include_top=False)
model_r50.summary()
input_layer = Input(shape=(img_width,img_height,3),name = 'image_input')
output_r50 = model_r50(input_layer)
fl = Flatten(name='flatten')(output_r50)
dense = Dense(1024, activation='relu', name='fc1')(fl)
drop = Dropout(0.5, name='drop')(dense)
pred = Dense(nb_classes, activation='softmax', name='predictions')(drop)
fine_model = Model(outputs=pred,inputs=input_layer)
weights = 'val54_r50.01-0.86.hdf5'
fine_model.load_weights('models/'+weights)
fine_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
fine_model.summary()
但我不知从哪里得到这个错误我只是解冻了网络,什么也没改变!
load_weights_from_hdf5_group(f, self.layers)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/topology.py", line 3008, in load_weights_from_hdf5_group
K.batch_set_value(weight_value_tuples)
File "/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.py", line 2189, in batch_set_value
get_session().run(assign_ops, feed_dict=feed_dict)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 778, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 961, in _run
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (128,) for Tensor u'Placeholder_140:0', which has shape '(512,)'
而且不一致大多数时候我的身材都不一样为什么会这样?如果我把ResNet改成VGG19,这就不会发生了Keras中的resnet有问题吗?
最佳答案
你的fine_model
是一个Model
,里面有另一个Model
(即ResNet50
)。似乎问题是save_weight()
,load_weight()
无法正确处理这种嵌套的Model
s。
也许您可以尝试以一种不会导致“嵌套Model
”的方式构建模型例如,
input_layer = Input(shape=(img_width, img_height, 3), name='image_input')
model_r50 = ResNet50(weights='imagenet', include_top=False, input_tensor=input_layer)
output_r50 = model_r50.output
fl = Flatten(name='flatten')(output_r50)
...