我正在关注本教程:http://blog.bignerdranch.com/754-scenekit-in-mountain-lion/
我对使用场景工具包感兴趣,但是我的场景可能潜在地具有成千上万个球体。为了对场景工具包进行压力测试,我尝试了以下方法:
SCNSphere *sphere = [SCNSphere sphereWithRadius:0.5];
for (int i=0; i<10; i++) {
for(int j=0; j<10; j++){
for(int k=0; k<10; k++){
SCNNode *myNode = [SCNNode nodeWithGeometry:sphere];
myNode.position = SCNVector3Make(i,j,k);
[root addChildNode:myNode];
}
}
}
例如,这对于1000个球体(10 ^ 3)正常工作,但对于1,000,000个球体(100 ^ 3)失败(也许不足为奇)。我不介意无法使用一百万个球体,但我想算出合理的上限(5,000到15,000?)以及如何提高上限。
我该怎么做才能减轻这种情况?例如我已经尝试过sphere.segmentCount = 3,虽然可以加快渲染速度,但是它对内存使用没有太大影响,我怀疑这是限制因素。
另外,似乎没有SCNPoint类。我当时正在考虑切换到球数过多时仅显示一个点,但是我无法从SceneKit文档中看到如何显示一个简单的点-我能看到的最简单的是一个三角形。
任何帮助深表感谢。
编辑: @toyos建议将SCNSphere对象合并到单个SCNGeometry对象中(前提是它们不需要独立动画,而不必这样做),但是我找不到简单的方法。
SCNGeometry是通过使用
[SCNGeometry geometryWithSources:(* NSArray)sources geometryWithElements:(* NSArray) elements]
作为here来创建的,但是我不清楚如何从我的领域创建SCNGeometry
对象。例如对于单个球体,我可以看到使用
sphere.geometryElementCount
来获取元素的数量,然后使用[sphere geometryElementAtIndex:(NSInteger)elementIndex]
来填充数组,这将为我提供元素,但是我不确定如何获取“源”(或它们的来源)甚至是)。获取几何源的方法是[sphere geometrySourcesForSemantic:(NSString*) semantic]
,但是这个语义字符串是什么? (这是要是“法线”还是“顶点”,还是别的什么?文档很有帮助地表示语义是“几何源的语义值。”而没有说出语义的可能值是什么)那只是针对单个球体,这将毫无意义(因为
SCNSphere
仍然是SCNGeometry
的子类),所以现在我必须添加多个球体。因此,在将球体的顶点添加到SCNGeometry
对象中时,是否必须手动对其进行平移?我只是想找出最明智的方法来做到这一点。
最佳答案
语义字符串为SCNGeometrySourceSemanticVertex | Normal | Texcoord ...
对于多个球体,答案是肯定的,您必须在展平前使用当前节点变换对顶点/法线进行变换。
下面是一个简化的示例(即,如果它们都具有相同的几何形状,则仅支持合并“input”的子元素)
- (SCNNode *) flattenNodeHierarchy:(SCNNode *) input
{
SCNNode *result = [SCNNode node];
NSUInteger nodeCount = [[input childNodes] count];
if(nodeCount > 0){
SCNNode *node = [[input childNodes] objectAtIndex:0];
NSArray *vertexArray = [node.geometry geometrySourcesForSemantic:SCNGeometrySourceSemanticVertex];
SCNGeometrySource *vertex = [vertexArray objectAtIndex:0];
SCNGeometryElement *element = [node.geometry geometryElementAtIndex:0]; //todo: support multiple elements
NSUInteger primitiveCount = element.primitiveCount;
NSUInteger newPrimitiveCount = primitiveCount * nodeCount;
size_t elementBufferLength = newPrimitiveCount * 3 * sizeof(int); //nTriangle x 3 vertex * size of int
int* elementBuffer = (int*)malloc(elementBufferLength);
/* simple case: here we consider that all the objects to flatten are the same
In the regular case we should iterate on every geometry and accumulate the number of vertex/triangles etc...*/
NSUInteger vertexCount = [vertex vectorCount];
NSUInteger newVertexCount = vertexCount * nodeCount;
SCNVector3 *newVertex = malloc(sizeof(SCNVector3) * newVertexCount);
SCNVector3 *newNormal = malloc(sizeof(SCNVector3) * newVertexCount); //assume same number of normal/vertex
//fill
NSUInteger vertexFillIndex = 0;
NSUInteger primitiveFillIndex = 0;
for(NSUInteger index=0; index< nodeCount; index++){
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
node = [[input childNodes] objectAtIndex:index];
NSArray *vertexArray = [node.geometry geometrySourcesForSemantic:SCNGeometrySourceSemanticVertex];
NSArray *normalArray = [node.geometry geometrySourcesForSemantic:SCNGeometrySourceSemanticNormal];
SCNGeometrySource *vertex = [vertexArray objectAtIndex:0];
SCNGeometrySource *normals = [normalArray objectAtIndex:0];
if([vertex bytesPerComponent] != sizeof(float)){
NSLog(@"todo: support other byte per component");
continue;
}
float *vertexBuffer = (float *)[[vertex data] bytes];
float *normalBuffer = (float *)[[normals data] bytes];
CATransform3D t = [node transform];
GLKMatrix4 matrix = MyGLKMatrix4FromCATransform3D(t);
//append source
for(NSUInteger vIndex = 0; vIndex < vertexCount; vIndex++, vertexFillIndex++){
GLKVector3 v = GLKVector3Make(vertexBuffer[vIndex * 3], vertexBuffer[vIndex * 3+1], vertexBuffer[vIndex * 3 + 2]);
GLKVector3 n = GLKVector3Make(normalBuffer[vIndex * 3], normalBuffer[vIndex * 3+1], normalBuffer[vIndex * 3 + 2]);
//transform
v = GLKMatrix4MultiplyVector3WithTranslation(matrix, v);
n = GLKMatrix4MultiplyVector3(matrix, n);
newVertex[vertexFillIndex] = SCNVector3Make(v.x, v.y, v.z);
newNormal[vertexFillIndex] = SCNVector3Make(n.x, n.y, n.z);
}
//append elements
//here we assume that all elements are SCNGeometryPrimitiveTypeTriangles
SCNGeometryElement *element = [node.geometry geometryElementAtIndex:0];
const void *inputPrimitive = [element.data bytes];
size_t bpi = element.bytesPerIndex;
NSUInteger offset = index * vertexCount;
for(NSUInteger pIndex = 0; pIndex < primitiveCount; pIndex++, primitiveFillIndex+=3){
elementBuffer[primitiveFillIndex] = offset + _getIndex(inputPrimitive, bpi, pIndex*3);
elementBuffer[primitiveFillIndex+1] = offset + _getIndex(inputPrimitive, bpi, pIndex*3+1);
elementBuffer[primitiveFillIndex+2] = offset + _getIndex(inputPrimitive, bpi, pIndex*3+2);
}
[pool drain];
}
NSArray *sources = @[[SCNGeometrySource geometrySourceWithVertices:newVertex count:newVertexCount],
[SCNGeometrySource geometrySourceWithNormals:newNormal count:newVertexCount]];
NSData *newElementData = [NSMutableData dataWithBytesNoCopy:elementBuffer length:elementBufferLength freeWhenDone:YES];
NSArray *elements = @[[SCNGeometryElement geometryElementWithData:newElementData
primitiveType:SCNGeometryPrimitiveTypeTriangles
primitiveCount:newPrimitiveCount bytesPerIndex:sizeof(int)]];
result.geometry = [SCNGeometry geometryWithSources:sources elements:elements];
//cleanup
free(newVertex);
free(newNormal);
}
return result;
}
//helpers:
GLKMatrix4 MyGLKMatrix4FromCATransform3D(CATransform3D transform) {
GLKMatrix4 m = {{transform.m11, transform.m12, transform.m13, transform.m14,
transform.m21, transform.m22, transform.m23, transform.m24,
transform.m31, transform.m32, transform.m33, transform.m34,
transform.m41, transform.m42, transform.m43, transform.m44}};
return m;
}
GLKVector3 MySCNVector3ToGLKVector3(SCNVector3 vector) {
GLKVector3 v = {{vector.x, vector.y, vector.z}};
return v;
}