本文实例讲述了Python实现PS滤镜的旋转模糊功能。分享给大家供大家参考,具体如下:
这里用 Python 实现 PS 滤镜中的旋转模糊,具体的算法原理和效果可以参考附录相关介绍。Python代码如下:
from skimage import img_as_float import matplotlib.pyplot as plt from skimage import io import numpy as np import numpy.matlib file_name='D:/Visual Effects/PS Algorithm/4.jpg' img=io.imread(file_name) img = img_as_float(img) img_out = img.copy() row, col, channel = img.shape xx = np.arange (col) yy = np.arange (row) x_mask = numpy.matlib.repmat (xx, row, 1) y_mask = numpy.matlib.repmat (yy, col, 1) y_mask = np.transpose(y_mask) center_y = (row -1) / 2.0 center_x = (col -1) / 2.0 R = np.sqrt((x_mask - center_x) **2 + (y_mask - center_y) ** 2) angle = np.arctan2(y_mask - center_y , x_mask - center_x) Num = 20 arr = ( np.arange(Num) + 1 ) / 100.0 for i in range (row): for j in range (col): T_angle = angle[i, j] + arr new_x = R[i, j] * np.cos(T_angle) + center_x new_y = R[i, j] * np.sin(T_angle) + center_y int_x = new_x.astype(int) int_y = new_y.astype(int) int_x[int_x > col-1] = col - 1 int_x[int_x < 0] = 0 int_y[int_y < 0] = 0 int_y[int_y > row -1] = row -1 img_out[i,j,0] = img[int_y, int_x, 0].sum()/Num img_out[i,j,1] = img[int_y, int_x, 1].sum()/Num img_out[i,j,2] = img[int_y, int_x, 2].sum()/Num plt.figure(1) plt.imshow(img) plt.axis('off') plt.figure(2) plt.imshow(img_out) plt.axis('off') plt.show()
附:PS 滤镜——旋转模糊
这里给出灰度图像的模糊算法,彩色图像只要分别对三个通道做模糊即可。
%% spin blur % 旋转模糊 clc; clear all; close all; I=imread('4.jpg'); I=double(I); % % % I_new=I; % % % for kk=1:3 % % % I_new(:,:,kk)=Spin_blur_Fun(I(:,:,kk), 30, 30); % % % end % % % imshow(I_new/255) Image=I; Image=0.2989 * I(:,:,1) + 0.5870 * I(:,:,2) + 0.1140 * I(:,:,3); [row, col]=size(Image); Image_new=Image; Center_X=(col+1)/2; Center_Y=(row+1)/2; validPoint=1; angle=5; radian=angle*pi/180; radian2=radian*radian; Num=30; Num2=Num*Num; for i=1:row for j=1:col validPoint=1; x0=j-Center_X; y0=Center_Y-i; x1=x0; y1=y0; Sum_Pixel=Image(i,j); for k=1:Num x0=x1; y0=y1; %%% 逆时针 % x1=x0-radian*y0/Num-radian2*x0/Num2; % y1=y0+radian*x0/Num-radian2*y0/Num2; %%% 顺时针 x1=x0+radian*y0/Num-radian2*x0/Num2; y1=y0-radian*x0/Num-radian2*y0/Num2; x=floor(x1+Center_X); y=floor(Center_Y-y1); if(x>1 && x<col && y>1 && y<row) validPoint=validPoint+1; Sum_Pixel=Sum_Pixel+Image(y,x); end end Image_new(i,j)=Sum_Pixel/validPoint; end end imshow(Image_new/255);
原图
效果图
效果图
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。