我有一个约2TB的完全清空的Redshift表,其中包含distkey phash
(高基数,数亿个值)和复合sortkeys (phash, last_seen)
。
当我执行类似的查询时:
SELECT
DISTINCT ret_field
FROM
table
WHERE
phash IN (
'5c8615fa967576019f846b55f11b6e41',
'8719c8caa9740bec10f914fc2434ccfd',
'9b657c9f6bf7c5bbd04b5baf94e61dae'
)
AND
last_seen BETWEEN '2015-10-01 00:00:00' AND '2015-10-31 23:59:59'
它很快返回。但是,当我将哈希数增加到10以上时,Redshift会根据http://docs.aws.amazon.com/redshift/latest/dg/r_in_condition.html#r_in_condition-optimization-for-large-in-lists将IN条件从一堆OR转换为数组
问题是当我有几十个
phash
值时,“优化”查询从不到一秒钟的响应时间变为超过半小时。换句话说,它停止使用sortkey并进行全表扫描。知道如何防止这种行为并保留使用sortkey来保持查询快速吗?
以下是 10个散列之间的
EXPLAIN
区别:少于10(0.4秒):
XN Unique (cost=0.00..157253450.20 rows=43 width=27)
-> XN Seq Scan on table (cost=0.00..157253393.92 rows=22510 width=27)
Filter: ((((phash)::text = '394e9a527f93377912cbdcf6789787f1'::text) OR ((phash)::text = '4534f9f8f68cc937f66b50760790c795'::text) OR ((phash)::text = '5c8615fa967576019f846b55f11b6e61'::text) OR ((phash)::text = '5d5743a86b5ff3d60b133c6475e7dce0'::text) OR ((phash)::text = '8719c8caa9740bec10f914fc2434cced'::text) OR ((phash)::text = '9b657c9f6bf7c5bbd04b5baf94e61d9e'::text) OR ((phash)::text = 'd7337d324be519abf6dbfd3612aad0c0'::text) OR ((phash)::text = 'ea43b04ac2f84710dd1f775efcd5ab40'::text)) AND (last_seen >= '2015-10-01 00:00:00'::timestamp without time zone) AND (last_seen <= '2015-10-31 23:59:59'::timestamp without time zone))
超过10个(45-60分钟):
XN Unique (cost=0.00..181985241.25 rows=1717530 width=27)
-> XN Seq Scan on table (cost=0.00..179718164.48 rows=906830708 width=27)
Filter: ((last_seen >= '2015-10-01 00:00:00'::timestamp without time zone) AND (last_seen <= '2015-10-31 23:59:59'::timestamp without time zone) AND ((phash)::text = ANY ('{33b84c5775b6862df965a0e00478840e,394e9a527f93377912cbdcf6789787f1,3d27b96948b6905ffae503d48d75f3d1,4534f9f8f68cc937f66b50760790c795,5a63cd6686f7c7ed07a614e245da60c2,5c8615fa967576019f846b55f11b6e61,5d5743a86b5ff3d60b133c6475e7dce0,8719c8caa9740bec10f914fc2434cced,9b657c9f6bf7c5bbd04b5baf94e61d9e,d7337d324be519abf6dbfd3612aad0c0,dbf4c743832c72e9c8c3cc3b17bfae5f,ea43b04ac2f84710dd1f775efcd5ab40,fb4b83121cad6d23e6da6c7b14d2724c}'::text[])))
最佳答案
尝试设置sortkeys (last_seen, phash)
,将last_seen
放在第一位是值得的。
速度慢的原因可能是因为排序键的开头是phash
,它看起来像一个随机字符。
正如AWS redshift开发人员文档所述,如果将where用作条件,则timestamp列应作为sort键的前导列。
按照排序键的顺序,所有列将按last_seen
排序,然后按phash
排序。 (What does it mean to have multiple sortkey columns?)
请注意,您必须重新创建表才能更改排序键。 This将帮助您做到这一点。