我最近发现类型空洞与证明上的模式匹配相结合,在 Haskell 中提供了非常好的类似于 Agda 的体验。例如:

{-# LANGUAGE
    DataKinds, PolyKinds, TypeFamilies,
    UndecidableInstances, GADTs, TypeOperators #-}

data (==) :: k -> k -> * where
    Refl :: x == x

sym :: a == b -> b == a
sym Refl = Refl

data Nat = Zero | Succ Nat

data SNat :: Nat -> * where
    SZero :: SNat Zero
    SSucc :: SNat n -> SNat (Succ n)

type family a + b where
    Zero   + b = b
    Succ a + b = Succ (a + b)

addAssoc :: SNat a -> SNat b -> SNat c -> (a + (b + c)) == ((a + b) + c)
addAssoc SZero b c = Refl
addAssoc (SSucc a) b c = case addAssoc a b c of Refl -> Refl

addComm :: SNat a -> SNat b -> (a + b) == (b + a)
addComm SZero SZero = Refl
addComm (SSucc a) SZero = case addComm a SZero of Refl -> Refl
addComm SZero (SSucc b) = case addComm SZero b of Refl -> Refl
addComm sa@(SSucc a) sb@(SSucc b) =
    case addComm a sb of
        Refl -> case addComm b sa of
            Refl -> case addComm a b of
                Refl -> Refl

真正好的事情是我可以用类型孔替换 Refl -> exp 结构的右侧,并且我的孔目标类型用证明更新,与 Agda 中的 rewrite 形式非常相似。

但是,有时该漏洞无法更新:
(+.) :: SNat a -> SNat b -> SNat (a + b)
SZero   +. b = b
SSucc a +. b = SSucc (a +. b)
infixl 5 +.

type family a * b where
    Zero   * b = Zero
    Succ a * b = b + (a * b)

(*.) :: SNat a -> SNat b -> SNat (a * b)
SZero   *. b = SZero
SSucc a *. b = b +. (a *. b)
infixl 6 *.

mulDistL :: SNat a -> SNat b -> SNat c -> (a * (b + c)) == ((a * b) + (a * c))
mulDistL SZero b c = Refl
mulDistL (SSucc a) b c =
    case sym $ addAssoc b (a *. b) (c +. a *. c) of
        -- At this point the target type is
        -- ((b + c) + (n * (b + c))) == (b + ((n * b) + (c + (n * c))))
        -- The next step would be to update the RHS of the equivalence:
        Refl -> case addAssoc (a *. b) c (a *. c) of
            Refl -> _ -- but the type of this hole remains unchanged...

此外,即使目标类型不一定在证明内排列,如果我从 Agda 粘贴整个内容,它仍然可以正常检查:
mulDistL' :: SNat a -> SNat b -> SNat c -> (a * (b + c)) == ((a * b) + (a * c))
mulDistL' SZero b c = Refl
mulDistL' (SSucc a) b c = case
    (sym $ addAssoc b (a *. b) (c +. a *. c),
    addAssoc (a *. b) c (a *. c),
    addComm (a *. b) c,
    sym $ addAssoc c (a *. b) (a *. c),
    addAssoc b c (a *. b +. a *. c),
    mulDistL' a b c
    ) of (Refl, Refl, Refl, Refl, Refl, Refl) -> Refl

你有什么想法为什么会发生这种情况(或者我如何以稳健的方式重写证明)?

最佳答案

如果您想生成所有可能的此类值,那么您可以编写一个函数来执行此操作,使用提供的或指定的边界。

很可能使用类型级别的教堂数字或一些类似的数字来强制创建这些数字,但对于您可能想要/需要的东西来说,这几乎肯定是太多的工作。

这可能不是您想要的(即“除了仅使用 (x, y) 因为 z = 5 - x - y”)但它比尝试在类型级别上进行某种强制限制以允许有效值。

关于haskell - 不稳定的孔型分辨率,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/22082852/

10-13 04:41