有什么方法可以修改泊松磁盘点生成器以找到here。我需要使用textfile.txt中的点坐标来生成新的泊松点以改善分布。在泊松磁盘采样的c++代码下面,以一个单位平方表示。
poissonGenerator.h:
#include <vector>
#include <random>
#include <stdint.h>
#include <time.h>
namespace PoissoGenerator
{
class DefaultPRNG
{
public:
DefaultPRNG()
: m_Gen(std::random_device()())
, m_Dis(0.0f, 1.f)
{
// prepare PRNG
m_Gen.seed(time(nullptr));
}
explicit DefaultPRNG(unsigned short seed)
: m_Gen(seed)
, m_Dis(0.0f, 1.f)
{
}
double RandomDouble()
{
return static_cast <double>(m_Dis(m_Gen));
}
int RandomInt(int Max)
{
std::uniform_int_distribution<> DisInt(0, Max);
return DisInt(m_Gen);
}
private:
std::mt19937 m_Gen;
std::uniform_real_distribution<double> m_Dis;
};
struct sPoint
{
sPoint()
: x(0)
, y(0)
, m_valid(false){}
sPoint(double X, double Y)
: x(X)
, y(Y)
, m_valid(true){}
double x;
double y;
bool m_valid;
//
bool IsInRectangle() const
{
return x >= 0 && y >= 0 && x <= 1 && y <= 1;
}
//
bool IsInCircle() const
{
double fx = x - 0.5f;
double fy = y - 0.5f;
return (fx*fx + fy*fy) <= 0.25f;
}
};
struct sGridPoint
{
sGridPoint(int X, int Y)
: x(X)
, y(Y)
{}
int x;
int y;
};
double GetDistance(const sPoint& P1, const sPoint& P2)
{
return sqrt((P1.x - P2.x)*(P1.x - P2.x) + (P1.y - P2.y)*(P1.y - P2.y));
}
sGridPoint ImageToGrid(const sPoint& P, double CellSize)
{
return sGridPoint((int)(P.x / CellSize), (int)(P.y / CellSize));
}
struct sGrid
{
sGrid(int W, int H, double CellSize)
: m_W(W)
, m_H(H)
, m_CellSize(CellSize)
{
m_Grid.resize((m_H));
for (auto i = m_Grid.begin(); i != m_Grid.end(); i++){ i->resize(m_W); }
}
void Insert(const sPoint& P)
{
sGridPoint G = ImageToGrid(P, m_CellSize);
m_Grid[G.x][G.y] = P;
}
bool IsInNeighbourhood(sPoint Point, double MinDist, double CellSize)
{
sGridPoint G = ImageToGrid(Point, CellSize);
//number of adjacent cell to look for neighbour points
const int D = 5;
// Scan the neighbourhood of the Point in the grid
for (int i = G.x - D; i < G.x + D; i++)
{
for (int j = G.y - D; j < G.y + D; j++)
{
if (i >= 0 && i < m_W && j >= 0 && j < m_H)
{
sPoint P = m_Grid[i][j];
if (P.m_valid && GetDistance(P, Point) < MinDist){ return true; }
}
}
}
return false;
}
private:
int m_H;
int m_W;
double m_CellSize;
std::vector< std::vector< sPoint> > m_Grid;
};
template <typename PRNG>
sPoint PopRandom(std::vector<sPoint>& Points, PRNG& Generator)
{
const int Idx = Generator.RandomInt(Points.size() - 1);
const sPoint P = Points[Idx];
Points.erase(Points.begin() + Idx);
return P;
}
template <typename PRNG>
sPoint GenerateRandomPointAround(const sPoint& P, double MinDist, PRNG& Generator)
{
// Start with non-uniform distribution
double R1 = Generator.RandomDouble();
double R2 = Generator.RandomDouble();
// radius should be between MinDist and 2 * MinDist
double Radius = MinDist * (R1 + 1.0f);
//random angle
double Angle = 2 * 3.141592653589f * R2;
// the new point is generated around the point (x, y)
double X = P.x + Radius * cos(Angle);
double Y = P.y + Radius * sin(Angle);
return sPoint(X, Y);
}
// Return a vector of generated points
// NewPointsCount - refer to bridson-siggraph07-poissondisk.pdf
// for details (the value 'k')
// Circle - 'true' to fill a circle, 'false' to fill a rectangle
// MinDist - minimal distance estimator, use negative value for default
template <typename PRNG = DefaultPRNG>
std::vector<sPoint> GeneratePoissonPoints(rsize_t NumPoints, PRNG& Generator, int NewPointsCount = 30,
bool Circle = true, double MinDist = -1.0f)
{
if (MinDist < 0.0f)
{
MinDist = sqrt(double(NumPoints)) / double(NumPoints);
}
std::vector <sPoint> SamplePoints;
std::vector <sPoint> ProcessList;
// create the grid
double CellSize = MinDist / sqrt(2.0f);
int GridW = (int)(ceil)(1.0f / CellSize);
int GridH = (int)(ceil)(1.0f / CellSize);
sGrid Grid(GridW, GridH, CellSize);
sPoint FirstPoint;
do
{
FirstPoint = sPoint(Generator.RandomDouble(), Generator.RandomDouble());
} while (!(Circle ? FirstPoint.IsInCircle() : FirstPoint.IsInRectangle()));
//Update containers
ProcessList.push_back(FirstPoint);
SamplePoints.push_back(FirstPoint);
Grid.Insert(FirstPoint);
// generate new points for each point in the queue
while (!ProcessList.empty() && SamplePoints.size() < NumPoints)
{
#if POISSON_PROGRESS_INDICATOR
// a progress indicator, kind of
if (SamplePoints.size() % 100 == 0) std::cout << ".";
#endif // POISSON_PROGRESS_INDICATOR
sPoint Point = PopRandom<PRNG>(ProcessList, Generator);
for (int i = 0; i < NewPointsCount; i++)
{
sPoint NewPoint = GenerateRandomPointAround(Point, MinDist, Generator);
bool Fits = Circle ? NewPoint.IsInCircle() : NewPoint.IsInRectangle();
if (Fits && !Grid.IsInNeighbourhood(NewPoint, MinDist, CellSize))
{
ProcessList.push_back(NewPoint);
SamplePoints.push_back(NewPoint);
Grid.Insert(NewPoint);
continue;
}
}
}
#if POISSON_PROGRESS_INDICATOR
std::cout << std::endl << std::endl;
#endif // POISSON_PROGRESS_INDICATOR
return SamplePoints;
}
}
并且主程序是:
泊松
#include "stdafx.h"
#include <vector>
#include <iostream>
#include <fstream>
#include <memory.h>
#define POISSON_PROGRESS_INDICATOR 1
#include "PoissonGenerator.h"
const int NumPoints = 20000; // minimal number of points to generate
int main()
{
PoissonGenerator::DefaultPRNG PRNG;
const auto Points =
PoissonGenerator::GeneratePoissonPoints(NumPoints,PRNG);
std::ofstream File("Poisson.txt", std::ios::out);
File << "NumPoints = " << Points.size() << std::endl;
for (const auto& p : Points)
{
File << " " << p.x << " " << p.y << std::endl;
}
system("PAUSE");
return 0;
}
最佳答案
假设您以[0,1] x [0,1]
的形式在std::pair<double, double>
空间中有一个点,但在[x,y] x [w,z]
空间中有一个期望点。
功能对象
struct ProjectTo {
double x, y, w, z;
std::pair<double, double> operator(std::pair<double, double> in)
{
return std::make_pair(in.first * (y - x) + x, in.second * (z - w) + w);
}
};
会将这样的输入点转换为所需的输出点。
进一步假设您有一个
std::vector<std::pair<double, double>> points
,它们都是从输入分布中提取的。std::copy(points.begin(), points.end(), points.begin(), ProjectTo{ x, y, w, z });
现在,您在输出空间中有了一个点 vector 。