我有一个数据框,其中有一列称为"Date",并且希望该列中的所有值具有相同的值(仅年份)。例子:

City     Date
Paris    01/04/2004
Lisbon   01/09/2004
Madrid   2004
Pekin    31/2004

我想要的是:
City     Date
Paris    2004
Lisbon   2004
Madrid   2004
Pekin    2004

这是我的代码:
fr61_70xls = pd.ExcelFile('AMADEUS FRANCE 1961-1970.xlsx')

#Here we import the individual sheets and clean the sheets
years=(['1961','1962','1963','1964','1965','1966','1967','1968','1969','1970'])

fr={}

header=(['City','Country','NACE','Cons','Last_year','Op_Rev_EUR_Last_avail_yr','BvD_Indep_Indic','GUO_Name','Legal_status','Date_of_incorporation','Legal_status_date'])

for year in years:
    # save every sheet in variable fr['1961'], fr['1962'] and so on
    fr[year]=fr61_70xls.parse(year,header=0,parse_cols=10)
    fr[year].columns=header
    # drop the entire Legal status date column
    fr[year]=fr[year].drop(['Legal_status_date','Date_of_incorporation'],axis=1)
    # drop every row where GUO Name is empty
    fr[year]=fr[year].dropna(axis=0,how='all',subset=[['GUO_Name']])
    fr[year]=fr[year].set_index(['GUO_Name','Date_of_incorporation'])

碰巧,在我的DataFrames中,例如fr['1961']Date_of_incorporation的值可以是任何值(字符串,整数等),因此也许最好完全擦除此列,然后将仅包含年份的另一列附加到DataFrames?

最佳答案

正如@DSM所指出的,您可以使用vectorised string methods更直接地执行此操作:

df['Date'].str[-4:].astype(int)
或使用提取(假设每个字符串中某处只有一组长度为4的数字):
df['Date'].str.extract('(?P<year>\d{4})').astype(int)
一种更灵活的替代方法是使用 apply (或等效的 map )执行此操作:
df['Date'] = df['Date'].apply(lambda x: int(str(x)[-4:]))
             #  converts the last 4 characters of the string to an integer
lambda函数从Date中获取输入并将其转换为年份。
您可以(也许应该)更详细地写为:
def convert_to_year(date_in_some_format):
    date_as_string = str(date_in_some_format)  # cast to string
    year_as_string = date_in_some_format[-4:] # last four characters
    return int(year_as_string)

df['Date'] = df['Date'].apply(convert_to_year)
也许“Year”是此专栏的更好称呼...

关于python - Pandas :如何更改列的所有值?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/12604909/

10-09 08:24