我在Spark中做一个小实验,遇到了麻烦。
wordCounts is : [('rat', 2), ('elephant', 1), ('cat', 2)]
# TODO: Replace <FILL IN> with appropriate code
from operator import add
totalCount = (wordCounts
.map(lambda x: (x,1)) <==== something wrong with this line maybe
.reduce(sum)) <====omething wrong with this line maybe
average = totalCount / float(wordsRDD.map(lambda x: (x,1)).reduceByKey(add).count())
print totalCount
print round(average, 2)
# TEST Mean using reduce (3b)
Test.assertEquals(round(average, 2), 1.67, 'incorrect value of average')
最佳答案
我想出了解决方案:
from operator import add
totalCount = (wordCounts
.map(lambda x: x[1])
.reduce(add))
average = totalCount / float(wordsRDD.map(lambda x: (x,1)).reduceByKey(add).count())
print totalCount
print round(average, 2)
关于python - 减少 Spark 并映射问题,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/30696968/