import numpy as np
from keras.utils import np_utils
nsample = 100
sample_space = ["HOME","DRAW","AWAY"]
array = np.random.choice(sample_space, nsample, )
uniques, coded_id = np.unique(array, return_inverse=True)
coded_array = np_utils.to_categorical(coded_id)

例子
输入
 ['AWAY', 'HOME', 'DRAW', 'AWAY', ...]

输出编码\阵列
[[ 0.  1.  0.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 ...,
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 1.  0.  0.]]

如何反向处理并从编码的数组中获取原始数据?

最佳答案

您可以使用np.argmax来检索那些ids并简单地索引到uniques中,这样就可以得到原始数组。因此,我们将有一个实现,就像这样-

uniques[y_code.argmax(1)]

样品运行-
In [44]: arr
Out[44]: array([5, 7, 3, 2, 4, 3, 7])

In [45]: uniques, ids = np.unique(arr, return_inverse=True)

In [46]: y_code = np_utils.to_categorical(ids, len(uniques))

In [47]: uniques[y_code.argmax(1)]
Out[47]: array([5, 7, 3, 2, 4, 3, 7])

关于python - np_utils.to_categorical反向,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/38845097/

10-12 18:32