据我所知,OpenCV使用RANSAC来解决findHomography
的问题,并且它返回一些有用的参数,例如homograph_mask
。
但是,如果我只想估算表示仿射矩阵的2D变换,是否有办法使用使用RANSAC并返回该掩码的findHomography
的相同方法?
最佳答案
您可以直接使用estimateAffinePartial2D:
https://docs.opencv.org/4.0.0/d9/d0c/group__calib3d.html#gad767faff73e9cbd8b9d92b955b50062d
cv::Mat cv::estimateAffinePartial2D (
InputArray from,
InputArray to,
OutputArray inliers = noArray(),
int method = RANSAC,
double ransacReprojThreshold = 3,
size_t maxIters = 2000,
double confidence = 0.99,
size_t refineIters = 10
)
例如 :
src_pts = np.float32([pic1.key_points[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
dst_pts = np.float32([pic2.key_points[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2)
# Find the transformation between points, standard RANSAC
transformation_matrix, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# Compute a rigid transformation (without depth, only scale + rotation + translation) and RANSAC
transformation_rigid_matrix, rigid_mask = cv2.estimateAffinePartial2D(src_pts, dst_pts)