大意: 给定树, 求删除一些边, 使得连通块大小的乘积最大
设$dp_{i,j}$表示只考虑点$i$的子树, $i$所在连通块大小为$j$的最大值.
转移的时候不计算$i$所在连通块的贡献, 留到最后再算.
这题答案很大, 还要套个高精, 这是没套高精的代码
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <cmath> #include <set> #include <map> #include <queue> #include <string> #include <cstring> #include <bitset> #include <functional> #include <random> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl '\n' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 710; int n, sz[N]; vector<int> g[N]; int dp[N][N],tmp[N]; void chkmax(int &a, int b) {a<b?a=b:0;} void dfs(int x, int f) { sz[x] = dp[x][1] = 1; for (int y:g[x]) if (y!=f) { dfs(y,x); REP(i,1,sz[x]+sz[y]) tmp[i]=0; REP(i,1,sz[x]) REP(j,1,sz[y]) { int t = dp[x][i]*dp[y][j]; chkmax(tmp[i],t*j); chkmax(tmp[i+j],t); } REP(i,1,sz[x]+sz[y]) dp[x][i]=tmp[i]; sz[x] += sz[y]; } } int main() { scanf("%d",&n); REP(i,2,n) { int u, v; scanf("%d%d",&u,&v); g[u].pb(v),g[v].pb(u); } dfs(1,0); int ans = 0; REP(i,1,n) ans = max(ans, dp[1][i]*i); printf("%d\n", ans); }