给定以下数据:

Class       Name
======      =============
Math        John Smith
-------------------------
Math        Jenny Simmons
-------------------------
English     Sarah Blume
-------------------------
English     John Smith
-------------------------
Chemistry   Roger Tisch
-------------------------
Chemistry   Jenny Simmons
-------------------------
Physics     Sarah Blume
-------------------------
Physics     Jenny Simmons


我每个都有一个类和名称的列表,如下所示:

[
{class: 'Math', student: 'John Smith'},
{class: 'Math', student: 'Jenny Simmons'},
{class: 'English', student: 'Sarah Blume'},
{class: 'English', student: 'John Smith'},
{class: 'Chemistry', student: 'John Smith'},
{class: 'Chemistry', student: 'Jenny Simmons'},
{class: 'Physics', student: 'Sarah Blume'},
{class: 'Physics', student: 'Jenny Simmons'},
]


我想创建一个邻接矩阵,作为输入,它具有以下结构,显示出每对班级之间共有的学生人数:

python - 如何从一长串源/目标对创建邻接矩阵?-LMLPHP

我将如何以最高效的方式在python / pandas中做到这一点?我的清单中有〜19M个班级/学生对(〜240MB)。

最佳答案

您可以像这样为邻接矩阵准备数据:

# create the "class-tuples" by
# joining the dataframe with itself
df_cross= df.merge(df, on='student', suffixes=['_left', '_right'])
# remove the duplicate tuples
# --> this will get you a upper / or lower
# triangular matrix with diagonal = 0
# if you rather want to have a full matrix
# just change the >= to == below
del_indexer= (df_cross['class_left']>=df_cross['class_right'])
df_cross.drop(df_cross[del_indexer].index, inplace=True)
# create the counts / lists
grouby_obj= df_cross.groupby(['class_left', 'class_right'])
result= grouby_obj.count()
result.columns= ['value']
# if you want to have lists of student names
# that have the course-combination in
# common, you can do it with the following line
# otherwise just remove it (I guess with a
# dataset of the size you mentioned, it will
# consume a lot of memory)
result['students']= grouby_obj.agg(list)


完整的输出如下所示:

Out[133]:
                        value                     students
class_left class_right
Chemistry  English          1                 [John Smith]
           Math             2  [John Smith, Jenny Simmons]
           Physics          1              [Jenny Simmons]
English    Math             1                 [John Smith]
           Physics          1                [Sarah Blume]
Math       Physics          1              [Jenny Simmons]


然后,您可以使用@piRSquared的方法对其进行旋转,或按以下方式进行操作:

result['value'].unstack()

Out[137]:
class_right  English  Math  Physics
class_left
Chemistry        1.0   2.0      1.0
English          NaN   1.0      1.0
Math             NaN   NaN      1.0


或者,如果您还想要名称:

result.unstack()
Out[138]:
              value                   students
class_right English Math Physics       English                         Math          Physics
class_left
Chemistry       1.0  2.0     1.0  [John Smith]  [John Smith, Jenny Simmons]  [Jenny Simmons]
English         NaN  1.0     1.0           NaN                 [John Smith]    [Sarah Blume]
Math            NaN  NaN     1.0           NaN                          NaN  [Jenny Simmons]

09-30 21:16