问题描述:
c++ - 如何使用Trie数据结构查找所有可能子串的LCP总和?-LMLPHP
引用: Fun With Strings

根据问题描述,一种简单的方法如下:为所有可能的子字符串(对于给定的字符串)找到 LCP 的长度之和:

#include <cstring>
#include <iostream>

using std::cout;
using std::cin;
using std::endl;
using std::string;

int lcp(string str1, string str2)
{
    string result;
    int n1 = str1.length(), n2 = str2.length();

    // Compare str1 and str2
    for (int i=0, j=0; i<=n1-1 && j<=n2-1; i++,j++)
    {
        if (str1[i] != str2[j])
            break;
        result.push_back(str1[i]);
    }

    return (result.length());
}

int main()
{
    string s;
    cin>>s;
    int sum = 0;

    for(int i = 0; i < s.length(); i++)
        for(int j = i; j < s.length(); j++)
            for(int k = 0; k < s.length(); k++)
                for(int l = k; l < s.length(); l++)
                    sum += lcp(s.substr(i,j - i + 1),s.substr(k,l - k + 1));
    cout<<sum<<endl;
    return 0;
}

根据对LCP的进一步阅读和研究,我发现了这个document,它指定了一种使用称为的高级数据结构有效地查找LCP的方法Tries 。我实现了一个Trie和一个压缩的Trie(后缀树),如下所示:
#include <iostream>
#include <cstring>

using std::cout;
using std::cin;
using std::endl;
using std::string;
const int ALPHA_SIZE = 26;

struct TrieNode
{
    struct TrieNode *children[ALPHA_SIZE];
    string label;
    bool isEndOfWord;
};
typedef struct TrieNode Trie;

Trie *getNode(void)
{
    Trie *parent = new Trie;
    parent->isEndOfWord = false;
    parent->label = "";
    for(int i = 0; i <ALPHA_SIZE; i++)
        parent->children[i] = NULL;

    return parent;
}

void insert(Trie *root, string key)
{
    Trie *temp = root;

    for(int i = 0; i < key.length(); i++)
    {
        int index = key[i] - 'a';
        if(!temp->children[index])
        {
            temp->children[index] = getNode();
            temp->children[index]->label = key[i];
        }
        temp = temp->children[index];
        temp->isEndOfWord = false;
    }
    temp->isEndOfWord = true;
}

int countChildren(Trie *node, int *index)
{
    int count = 0;

    for(int i = 0; i < ALPHA_SIZE; i++)
    {
        if(node->children[i] != NULL)
        {
            count++;
            *index = i;
        }
    }
    return count;
}

void display(Trie *root)
{
    Trie *temp = root;
    for(int i = 0; i < ALPHA_SIZE; i++)
    {
        if(temp->children[i] != NULL)
        {
            cout<<temp->label<<"->"<<temp->children[i]->label<<endl;
            if(!temp->isEndOfWord)
                display(temp->children[i]);
        }
    }
}

void compress(Trie *root)
{
    Trie *temp = root;
    int index = 0;

    for(int i = 0; i < ALPHA_SIZE; i++)
    {
        if(temp->children[i])
        {
            Trie *child = temp->children[i];

            if(!child->isEndOfWord)
            {
                if(countChildren(child,&index) >= 2)
                {
                    compress(child);
                }
                else if(countChildren(child,&index) == 1)
                {
                    while(countChildren(child,&index) < 2 and countChildren(child,&index) > 0)
                    {
                        Trie *sub_child = child->children[index];

                        child->label = child->label + sub_child->label;
                        child->isEndOfWord = sub_child->isEndOfWord;
                        memcpy(child->children,sub_child->children,sizeof(sub_child->children));

                        delete(sub_child);
                    }
                    compress(child);
                }
            }
        }
    }
}

bool search(Trie *root, string key)
{
    Trie *temp = root;

    for(int i = 0; i < key.length(); i++)
    {
        int index = key[i] - 'a';
        if(!temp->children[index])
            return false;
        temp = temp->children[index];
    }
    return (temp != NULL && temp->isEndOfWord);
}

int main()
{
    string input;
    cin>>input;

    Trie *root = getNode();

    for(int i = 0; i < input.length(); i++)
        for(int j = i; j < input.length(); j++)
        {
            cout<<"Substring : "<<input.substr(i,j - i + 1)<<endl;
            insert(root, input.substr(i,j - i + 1));
        }

    cout<<"DISPLAY"<<endl;
    display(root);

    compress(root);
    cout<<"AFTER COMPRESSION"<<endl;
    display(root);

    return 0;
}

我的问题是如何继续查找LCP的长度。我可以通过在分支节点上获取标签字段来获取LCP,但是如何计算所有可能的子字符串的LCP长度?

我想到的一种方法是,如何使用分支节点,包含LCP的标签字段以及分支节点的子节点来找到所有LCP长度的总和(最低公共(public)祖先吗?)。但是我仍然很困惑。我该如何进一步进行?

注意:我解决此问题的方法也可能是错误的,因此也请针对该问题建议其他方法(考虑时间和空间的复杂性)。

链接到 Unresolved 类似问题:
  • sum of LCP of all pairs of substrings of a given string
  • Longest common prefix length of all substrings and a string

  • 代码和理论引用:
  • LCP
  • Trie
  • Compressed Trie

  • Update1:​​

    基于@Adarsh Anurag的回答,我提出了以下实现
    借助trie数据结构,
    #include <iostream>
    #include <cstring>
    #include <stack>
    
    using std::cout;
    using std::cin;
    using std::endl;
    using std::string;
    using std::stack;
    
    const int ALPHA_SIZE = 26;
    int sum = 0;
    stack <int> lcp;
    
    struct TrieNode
    {
        struct TrieNode *children[ALPHA_SIZE];
        string label;
        int count;
    };
    typedef struct TrieNode Trie;
    
    Trie *getNode(void)
    {
        Trie *parent = new Trie;
        parent->count = 0;
        parent->label = "";
        for(int i = 0; i <ALPHA_SIZE; i++)
            parent->children[i] = NULL;
    
        return parent;
    }
    
    void insert(Trie *root, string key)
    {
        Trie *temp = root;
    
        for(int i = 0; i < key.length(); i++)
        {
            int index = key[i] - 'a';
            if(!temp->children[index])
            {
                temp->children[index] = getNode();
                temp->children[index]->label = key[i];
            }
            temp = temp->children[index];
        }
        temp->count++;
    }
    
    int countChildren(Trie *node, int *index)
    {
        int count = 0;
    
        for(int i = 0; i < ALPHA_SIZE; i++)
        {
            if(node->children[i] != NULL)
            {
                count++;
                *index = i;
            }
        }
        return count;
    }
    
    void display(Trie *root)
    {
        Trie *temp = root;
        int index = 0;
        for(int i = 0; i < ALPHA_SIZE; i++)
        {
            if(temp->children[i] != NULL)
            {
                cout<<temp->label<<"->"<<temp->children[i]->label<<endl;
                cout<<"CountOfChildren:"<<countChildren(temp,&index)<<endl;
                cout<<"Counter:"<<temp->children[i]->count<<endl;
    
                display(temp->children[i]);
            }
        }
    }
    
    void lcp_sum(Trie *root,int counter,string lcp_label)
    {
        Trie *temp = root;
        int index = 0;
    
        for(int i = 0; i < ALPHA_SIZE; i++)
        {
            if(temp->children[i])
            {
                Trie *child = temp->children[i];
    
                if(lcp.empty())
                {
                    lcp_label = child->label;
                    counter = 0;
    
                    lcp.push(child->count*lcp_label.length());
                    sum += lcp.top();
                    counter += 1;
                }
                else
                {
                    lcp_label = lcp_label + child->label;
                    stack <int> temp = lcp;
    
                    while(!temp.empty())
                    {
                        sum = sum + 2 * temp.top() * child->count;
                        temp.pop();
                    }
    
                    lcp.push(child->count*lcp_label.length());
                    sum += lcp.top();
                    counter += 1;
                }
    
                if(countChildren(child,&index) > 1)
                {
                    lcp_sum(child,0,lcp_label);
                }
                else if (countChildren(child,&index) == 1)
                    lcp_sum(child,counter,lcp_label);
                else
                {
                    while(counter-- && !lcp.empty())
                        lcp.pop();
                }
            }
        }
    }
    
    int main()
    {
        string input;
        cin>>input;
    
        Trie *root = getNode();
    
        for(int i = 0; i < input.length(); i++)
            for(int j = i; j < input.length(); j++)
            {
                cout<<"Substring : "<<input.substr(i,j - i + 1)<<endl;
                insert(root, input.substr(i,j - i + 1));
                display(root);
            }
    
        cout<<"DISPLAY"<<endl;
        display(root);
    
        cout<<"COUNT"<<endl;
        lcp_sum(root,0,"");
        cout<<sum<<endl;
    
        return 0;
    }
    

    从Trie结构中,我删除了isEndOfWord变量,而是将其替换为counter。此变量跟踪重复的子字符串,这应该有助于计算具有重复字符的字符串的LCP。但是,以上实现仅适用于具有不同字符的字符串。我尝试实现@Adarsh建议的方法来处理重复字符,但不满足任何测试用例。

    Update2:

    根据来自@Adarsh的进一步更新的答案以及使用不同测试用例的“尝试和错误”,我似乎在重复字符方面有所进步,但是仍然无法按预期工作。这是带有注释的实现,
    // LCP : Longest Common Prefix
    // DFS : Depth First Search
    
    #include <iostream>
    #include <cstring>
    #include <stack>
    #include <queue>
    
    using std::cout;
    using std::cin;
    using std::endl;
    using std::string;
    using std::stack;
    using std::queue;
    
    const int ALPHA_SIZE = 26;
    int sum = 0;     // Global variable for LCP sum
    stack <int> lcp; //Keeps track of current LCP
    
    // Trie Data Structure Implementation (See References Section)
    struct TrieNode
    {
        struct TrieNode *children[ALPHA_SIZE]; // Search space can be further reduced by keeping track of required indicies
        string label;
        int count; // Keeps track of repeat substrings
    };
    typedef struct TrieNode Trie;
    
    Trie *getNode(void)
    {
        Trie *parent = new Trie;
        parent->count = 0;
        parent->label = ""; // Root Label at level 0 is an empty string
        for(int i = 0; i <ALPHA_SIZE; i++)
            parent->children[i] = NULL;
    
        return parent;
    }
    
    void insert(Trie *root, string key)
    {
        Trie *temp = root;
    
        for(int i = 0; i < key.length(); i++)
        {
            int index = key[i] - 'a';   // Lowercase alphabets only
            if(!temp->children[index])
            {
                temp->children[index] = getNode();
                temp->children[index]->label = key[i]; // Label represents the character being inserted into the node
            }
            temp = temp->children[index];
        }
        temp->count++;
    }
    
    // Returns the count of child nodes for a given node
    int countChildren(Trie *node, int *index)
    {
        int count = 0;
    
        for(int i = 0; i < ALPHA_SIZE; i++)
        {
            if(node->children[i] != NULL)
            {
                count++;
                *index = i; //Not required for this problem, used in compressed trie implementation
            }
        }
        return count;
    }
    
    // Displays the Trie in DFS manner
    void display(Trie *root)
    {
        Trie *temp = root;
        int index = 0;
        for(int i = 0; i < ALPHA_SIZE; i++)
        {
            if(temp->children[i] != NULL)
            {
                cout<<temp->label<<"->"<<temp->children[i]->label<<endl; // Display in this format : Root->Child
                cout<<"CountOfChildren:"<<countChildren(temp,&index)<<endl; // Count of Child nodes for Root
                cout<<"Counter:"<<temp->children[i]->count<<endl; // Count of repeat substrings for a given node
                display(temp->children[i]);
            }
        }
    }
    
    /* COMPRESSED TRIE IMPLEMENTATION
    void compress(Trie *root)
    {
        Trie *temp = root;
        int index = 0;
    
        for(int i = 0; i < ALPHA_SIZE; i++)
        {
            if(temp->children[i])
            {
                Trie *child = temp->children[i];
    
                //if(!child->isEndOfWord)
                {
                    if(countChildren(child,&index) >= 2)
                    {
                        compress(child);
                    }
                    else if(countChildren(child,&index) == 1)
                    {
                        while(countChildren(child,&index) < 2 and countChildren(child,&index) > 0)
                        {
                            Trie *sub_child = child->children[index];
    
                            child->label = child->label + sub_child->label;
                            //child->isEndOfWord = sub_child->isEndOfWord;
                            memcpy(child->children,sub_child->children,sizeof(sub_child->children));
    
                            delete(sub_child);
                        }
                        compress(child);
                    }
                }
            }
        }
    }
    */
    
    // Calculate LCP Sum recursively
    void lcp_sum(Trie *root,int *counter,string lcp_label,queue <int> *s_count)
    {
        Trie *temp = root;
        int index = 0;
    
        // Traverse through this root's children array, to find child nodes
        for(int i = 0; i < ALPHA_SIZE; i++)
        {
            // If child nodes found, then ...
            if(temp->children[i] != NULL)
            {
                Trie *child = temp->children[i];
    
                // Check if LCP stack is empty
                if(lcp.empty())
                {
                    lcp_label = child->label;   // Set LCP label as Child's label
                    *counter = 0;               // To make sure counter is not -1 during recursion
    
                    /*
                        * To include LCP of repeat substrings, multiply the count variable with current LCP Label's length
                        * Push this to a stack called lcp
                    */
                    lcp.push(child->count*lcp_label.length());
    
                    // Add LCP for (a,a)
                    sum += lcp.top() * child->count; // Formula to calculate sum for repeat substrings : (child->count) ^ 2 * LCP Label's Length
                    *counter += 1; // Increment counter, this is used further to pop elements from the stack lcp, when a branching node is encountered
                }
                else
                {
                    lcp_label = lcp_label + child->label; // If not empty, then add Child's label to LCP label
                    stack <int> temp = lcp; // Temporary Stack
    
                    /*
                        To calculate LCP for different combinations of substrings,
                        2 -> accounts for (a,b) and (b,a)
                        temp->top() -> For previous substrings and their combinations with the current substring
                        child->count() -> For any repeat substrings for current node/substring
                    */
                    while(!temp.empty())
                    {
                        sum = sum + 2 * temp.top() * child->count;
                        temp.pop();
                    }
    
                    // Similar to above explanation for if block
                    lcp.push(child->count*lcp_label.length());
                    sum += lcp.top() * child->count;
                    *counter += 1;
                }
    
                // If a branching node is encountered
                if(countChildren(child,&index) > 1)
                {
                    int lc = 0; // dummy variable
                    queue <int> ss_count; // queue to keep track of substrings (counter) from the child node of the branching node
                    lcp_sum(child,&lc,lcp_label,&ss_count); // Recursively calculate LCP for child node
    
                    // This part is experimental, does not work for all testcases
                    // Used to calculate the LCP count for substrings between child nodes of the branching node
                    if(countChildren(child,&index) == 2)
                    {
                        int counter_queue = ss_count.front();
                        ss_count.pop();
    
                        while(counter_queue--)
                        {
                            sum = sum +  2 * ss_count.front() * lcp_label.length();
                            ss_count.pop();
                        }
                    }
                    else
                    {
                        // Unclear, what happens if children is > 3
                        // Should one take combination of each child node with one another ?
                        while(!ss_count.empty())
                        {
                            sum = sum +  2 * ss_count.front() * lcp_label.length();
                            ss_count.pop();
                        }
                    }
    
                    lcp_label = temp->label; // Set LCP label back to Root's Label
    
                    // Empty the stack till counter is 0, so as to restore it's state when it first entered the child node from the branching node
                    while(*counter)
                    {
                        lcp.pop();
                        *counter -=1;
                    }
                    continue; // Continue to next child of the branching node
                }
                else if (countChildren(child,&index) == 1)
                {
                    // If count of children is 1, then recursively calculate LCP for further child node
                    lcp_sum(child,counter,lcp_label,s_count);
                }
                else
                {
                    // If count of child nodes is 0, then push the counter to the queue for that node
                    s_count->push(*counter);
                    // Empty the stack till counter is 0, so as to restore it's state when it first entered the child node from the branching node
                    while(*counter)
                    {
                        lcp.pop();
                        *counter -=1;
                    }
                    lcp_label = temp->label; // Set LCP label back to Root's Label
    
                }
            }
        }
    }
    
    /* SEARCHING A TRIE
    bool search(Trie *root, string key)
    {
        Trie *temp = root;
    
        for(int i = 0; i < key.length(); i++)
        {
            int index = key[i] - 'a';
            if(!temp->children[index])
                return false;
            temp = temp->children[index];
        }
        return (temp != NULL );//&& temp->isEndOfWord);
    }
    */
    
    int main()
    {
        int t;
        cin>>t; // Number of testcases
    
        while(t--)
        {
            string input;
            int len;
            cin>>len>>input; // Get input length and input string
    
            Trie *root = getNode();
    
            for(int i = 0; i < len; i++)
                for(int j = i; j < len; j++)
                    insert(root, input.substr(i,j - i + 1)); // Insert all possible substrings into Trie for the given input
    
            /*
              cout<<"DISPLAY"<<endl;
              display(root);
            */
    
            //LCP COUNT
            int counter = 0;    //dummy variable
            queue <int> q;      //dummy variable
            lcp_sum(root,&counter,"",&q);
            cout<<sum<<endl;
    
            sum = 0;
    
            /*
              compress(root);
              cout<<"AFTER COMPRESSION"<<endl;
              display(root);
            */
        }
        return 0;
    }
    

    另外,这是一些示例测试用例(预期的输出),
    1. Input : 2 2 ab 3 zzz
    
       Output : 6 46
    
    2. Input : 3 1 a 5 afhce 8 ahsfeaa
    
       Output : 1 105 592
    
    3. Input : 2 15 aabbcceeddeeffa 3 bab
    
       Output : 7100 26
    
    

    对于测试用例2和3(部分输出),以上实现失败。请提出解决此问题的方法。解决此问题的任何其他方法也可以。

    最佳答案

    您的直觉正在朝着正确的方向发展。

    基本上,每当看到子字符串的LCP问题时,都应该考虑诸如suffix treessuffix arrayssuffix automata之类的后缀数据结构。后缀树可以说是功能最强大,最容易处理的树,它们可以很好地解决此问题。

    后缀树是一个trie,包含字符串的所有满足条件,每个非分支边缘链都压缩为单个长边缘。具有所有条件的普通trie的问题在于它具有O(N ^ 2)个节点,因此需要O(N ^ 2)个内存。假定您可以使用琐碎的动态编程预先计算O(N ^ 2)时间和空间中所有对的LCP,那么没有压缩的后缀树就不好了。
    压缩的特里占用O(N)内存,但是如果您使用O(N ^ 2)算法构建它,则仍然无效(就像您在代码中所做的那样)。您应该使用Ukkonen's algorithm以O(N)时间的压缩形式直接构造后缀树。学习和实现此算法并非易事,也许您会发现web visualization很有帮助。最后一点,为简单起见,我将在字符串的末尾添加一个定点字符(例如dollar $),以确保所有叶子都是后缀树中的显式节点。

    注意:

  • 字符串的每个后缀都表示为从根到树上的叶子的路径(回想哨兵)。这是1-1对应。
  • 字符串的每个子字符串都表示为从根到树中节点(包括“长边内”的隐式节点)的路径,反之亦然。而且,所有等值的子字符串都映射到同一路径。为了了解有多少相等的子字符串映射到特定的根节点路径,请计算节点下方的子树中有多少叶子。
  • 为了找到两个子串的LCP,找到它们对应的根节点路径,并取节点的LCA。 LCP是LCA顶点的深度。当然,这将是一个物理顶点,并且有几个边缘从该顶点向下延伸。

  • 这是主要思想。考虑所有成对的子字符串,并将它们分为具有相同LCA顶点
    组。换句话说,让我们计算A [v]:= LCA顶点正好为v的子字符串对的数量。如果为每个顶点v计算此数量,那么剩下的要解决的问题是:将每个数字乘以节点的深度并获得总和。同样,数组A [*]仅占用O(N)空间,这意味着我们还没有失去在线性时间内解决整个问题的机会。

    回想一下,每个子字符串都是根节点路径。考虑两个节点(代表两个任意子字符串)和一个顶点v。让我们将在顶点v处具 Root过的子树称为“v子树”。然后:
  • 如果两个节点都在v-subtree内,则它们的LCA也在v-subtree 内。
  • 否则,它们的LCA在v-subtree之外,因此它可以双向工作。

  • 让我们介绍另一个数量B [v]:= LCA顶点在v-subtree内的子串对的数量。上面的语句显示了一种计算B [v]的有效方法:它只是v子树
    中节点数的平方,因为其中的每对节点都符合标准。但是,此处应考虑多重性,因此每个节点必须计入与其对应的子字符串一样多的次数。

    公式如下:
        B[v] = Q[v]^2
        Q[v] = sum_s( Q[s] + M[s] * len(vs) )    for s in sons(v)
        M[v] = sum_s( M[s] )                     for s in sons(v)
    

    M [v]是顶点的多重性(即v子树中存在多少个叶子),而Q [v]是v子树中考虑了多重性的节点数。当然,您可以自己推断出叶子的基本情况。使用这些公式,您可以在O(N)时间内遍历树时计算M [*],Q [*],B [*]。

    仅需使用B [*]数组来计算A [*]数组。可以通过简单排除公式在O(N)中完成:
    A[v] = B[v] - sum_s( B[s] )           for s in sons(v)
    

    如果实现所有这些,您将能够在完美的O(N)时间和空间上解决整个问题。或更好地说:O(N C)时空,其中C是字母的大小。

    09-25 20:40