线段树套set+最短路
问题在于一次更新的点太多,如果按点扫描复杂度太高
发现一次更新的边是一样的,按边跑最短路,一个点被访问就删除,每次矩形查询用线段树套$set$
均摊复杂度$O(nlog^2n)$
#include <bits/stdc++.h> using namespace std; const int maxn = 2e5 + 5; int n, m, w, h; int t[maxn], d[maxn], x[maxn], y[maxn], p[maxn], L[maxn], R[maxn], U[maxn], D[maxn], vis[maxn]; vector<int> G[maxn]; priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > q; set<pair<int, int> > s[maxn * 2]; void update(int l, int r, int x, int p, int id) { s[x].insert(make_pair(y[id], id)); if(l == r) { return; } int mid = l + r >> 1; if(p <= mid) { update(l, mid, x << 1, p, id); } else { update(mid + 1, r, x << 1 | 1, p, id); } } void del(int l, int r, int x, int id, int val) { if(l > R[id] || r < L[id]) { return; } if(l >= L[id] && r <= R[id]) { set<pair<int, int> > :: iterator it = s[x].lower_bound(make_pair(D[id], 0)), tmp; while((it != s[x].end()) && (it -> first <= U[id])) { int u = it -> second; if(!vis[u]) { vis[u] = 1; d[u] = val; for(int i = 0; i < G[u].size(); ++i) { q.push(make_pair(d[u] + t[G[u][i]], G[u][i])); } } tmp = it; ++it; s[x].erase(tmp); } return; } int mid = l + r >> 1; del(l, mid, x << 1, id, val); del(mid + 1, r, x << 1 | 1, id, val); } int main() { scanf("%d%d%d%d", &n, &m, &w, &h); for(int i = 0; i < n; ++i) { scanf("%d%d", &x[i], &y[i]); update(1, w, 1, x[i], i); } for(int i = 0; i < m; ++i) { scanf("%d%d%d%d%d%d", &p[i], &t[i], &L[i], &R[i], &D[i], &U[i]); --p[i]; G[p[i]].push_back(i); } for(int i = 0; i < G[0].size(); ++i) { q.push(make_pair(t[G[0][i]], G[0][i])); } while(!q.empty()) { pair<int, int> o = q.top(); q.pop(); del(1, w, 1, o.second, o.first); } for(int i = 1; i < n; ++i) { printf("%d\n", d[i]); } return 0; }