线段树套set+最短路

问题在于一次更新的点太多,如果按点扫描复杂度太高

发现一次更新的边是一样的,按边跑最短路,一个点被访问就删除,每次矩形查询用线段树套$set$

均摊复杂度$O(nlog^2n)$

#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
int n, m, w, h;
int t[maxn], d[maxn], x[maxn], y[maxn], p[maxn], L[maxn], R[maxn], U[maxn], D[maxn], vis[maxn];
vector<int> G[maxn];
priority_queue<pair<int, int>, vector<pair<int, int> >, greater<pair<int, int> > > q;
set<pair<int, int> > s[maxn * 2];
void update(int l, int r, int x, int p,  int id) {
    s[x].insert(make_pair(y[id], id));
    if(l == r) {
        return;
    }
    int mid = l + r >> 1;
    if(p <= mid) {
        update(l, mid, x << 1, p, id);
    } else {
        update(mid + 1, r, x << 1 | 1, p, id);
    }
}
void del(int l, int r, int x, int id, int val) {
    if(l > R[id] || r < L[id]) {
        return;
    }
    if(l >= L[id] && r <= R[id]) {
        set<pair<int, int> > :: iterator it = s[x].lower_bound(make_pair(D[id], 0)), tmp;
        while((it != s[x].end()) && (it -> first <= U[id])) {
            int u = it -> second;
            if(!vis[u]) {
                vis[u] = 1;
                d[u] = val;
                for(int i = 0; i < G[u].size(); ++i) {
                    q.push(make_pair(d[u] + t[G[u][i]], G[u][i]));
                }
            }
            tmp = it;
            ++it;
            s[x].erase(tmp);
        }
        return;
    }
    int mid = l + r >> 1;
    del(l, mid, x << 1, id, val);
    del(mid + 1, r, x << 1 | 1, id, val);
}
int main() {
    scanf("%d%d%d%d", &n, &m, &w, &h);
    for(int i = 0; i < n; ++i) {
        scanf("%d%d", &x[i], &y[i]);
        update(1, w, 1, x[i], i);
    }
    for(int i = 0; i < m; ++i) {
        scanf("%d%d%d%d%d%d", &p[i], &t[i], &L[i], &R[i], &D[i], &U[i]);
        --p[i];
        G[p[i]].push_back(i);
    }
    for(int i = 0; i < G[0].size(); ++i) {
        q.push(make_pair(t[G[0][i]], G[0][i]));
    }
    while(!q.empty()) {
        pair<int, int> o = q.top();
        q.pop();
        del(1, w, 1, o.second, o.first);
    }
    for(int i = 1; i < n; ++i) {
        printf("%d\n", d[i]);
    }
    return 0;
}
View Code
12-24 17:34