步骤1:运行生产者以创建样本数据

./bin/kafka-avro-console-producer \
         --broker-list localhost:9092 --topic stream-test-topic \
         --property schema.registry.url=http://localhost:8081 \
         --property value.schema='{"type":"record","name":"dealRecord","fields":[{"name":"DEAL_ID","type":"string"},{"name":"DEAL_EXPENSE_CODE","type":"string"},{"name":"DEAL_BRANCH","type":"string"}]}'

样本数据 :
{"DEAL_ID":"deal002", "DEAL_EXPENSE_CODE":"EXP002", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal003", "DEAL_EXPENSE_CODE":"EXP003", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal004", "DEAL_EXPENSE_CODE":"EXP004", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal005", "DEAL_EXPENSE_CODE":"EXP005", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal006", "DEAL_EXPENSE_CODE":"EXP006", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal007", "DEAL_EXPENSE_CODE":"EXP001", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal008", "DEAL_EXPENSE_CODE":"EXP002", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal009", "DEAL_EXPENSE_CODE":"EXP003", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal010", "DEAL_EXPENSE_CODE":"EXP004", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal011", "DEAL_EXPENSE_CODE":"EXP005", "DEAL_BRANCH":"AMSTERDAM"}
{"DEAL_ID":"deal012", "DEAL_EXPENSE_CODE":"EXP006", "DEAL_BRANCH":"AMSTERDAM"}

步骤2:打开另一个终端并运行使用者以测试数据。
./bin/kafka-avro-console-consumer --topic stream-test-topic \
         --bootstrap-server localhost:9092 \
         --property schema.registry.url=http://localhost:8081 \
         --from-beginning

步骤3:打开另一个终端并运行生产者。
./bin/kafka-avro-console-producer \
         --broker-list localhost:9092 --topic expense-test-topic \
--property "parse.key=true" \
--property "key.separator=:" \
--property schema.registry.url=http://localhost:8081 \
--property key.schema='"string"' \
         --property value.schema='{"type":"record","name":"dealRecord","fields":[{"name":"EXPENSE_CODE","type":"string"},{"name":"EXPENSE_DESC","type":"string"}]}'

数据:
"pk1":{"EXPENSE_CODE":"EXP001", "EXPENSE_DESC":"Regulatory Deposit"}
"pk2":{"EXPENSE_CODE":"EXP002", "EXPENSE_DESC":"ABC - Sofia"}
"pk3":{"EXPENSE_CODE":"EXP003", "EXPENSE_DESC":"Apple Corporation"}
"pk4":{"EXPENSE_CODE":"EXP004", "EXPENSE_DESC":"Confluent Europe"}
"pk5":{"EXPENSE_CODE":"EXP005", "EXPENSE_DESC":"Air India"}
"pk6":{"EXPENSE_CODE":"EXP006", "EXPENSE_DESC":"KLM International"}

步骤4:打开另一个终端并运行使用者
./bin/kafka-avro-console-consumer --topic expense-test-topic \
         --bootstrap-server localhost:9092 \
--property "parse.key=true" \
--property "key.separator=:" \
--property schema.registry.url=http://localhost:8081 \
         --from-beginning

步骤5:登录到KSQL客户端。
./bin/ksql http://localhost:8088

创建以下流和表并运行联接查询。

KSQL:

溪流:
    CREATE STREAM SAMPLE_STREAM
       (DEAL_ID VARCHAR, DEAL_EXPENSE_CODE varchar, DEAL_BRANCH VARCHAR)
       WITH (kafka_topic='stream-test-topic',value_format='AVRO', key = 'DEAL_ID');

table :
CREATE TABLE SAMPLE_TABLE
   (EXPENSE_CODE varchar, EXPENSE_DESC VARCHAR)
   WITH (kafka_topic='expense-test-topic',value_format='AVRO', key = 'EXPENSE_CODE');

以下是输出:
ksql> SELECT STREAM1.DEAL_EXPENSE_CODE, TABLE1.EXPENSE_DESC
       from SAMPLE_STREAM STREAM1 LEFT JOIN SAMPLE_TABLE TABLE1
       ON STREAM1.DEAL_EXPENSE_CODE = TABLE1.EXPENSE_CODE
       WINDOW TUMBLING (SIZE 3 MINUTE)
       GROUP BY STREAM1.DEAL_EXPENSE_CODE, TABLE1.EXPENSE_DESC;

EXP001 | null
EXP001 | null
EXP002 | null
EXP003 | null
EXP004 | null
EXP005 | null
EXP006 | null
EXP002 | null
EXP002 | null

最佳答案

tl; dr:您的表数据需要在您要加入的列上键入。

使用上面的样本数据,这是调查和修复的方法。

  • 使用KSQL检查主题中的数据(无需kafka-avro-console-consumer)。输出数据的格式为时间戳,键,值
  • stream:
    ksql> print 'stream-test-topic' from beginning;
    Format:AVRO
    30/04/18 15:59:13 BST, null, {"DEAL_ID": "deal002", "DEAL_EXPENSE_CODE": "EXP002", "DEAL_BRANCH": "AMSTERDAM"}
    30/04/18 15:59:13 BST, null, {"DEAL_ID": "deal003", "DEAL_EXPENSE_CODE": "EXP003", "DEAL_BRANCH": "AMSTERDAM"}
    30/04/18 15:59:13 BST, null, {"DEAL_ID": "deal004", "DEAL_EXPENSE_CODE": "EXP004", "DEAL_BRANCH": "AMSTERDAM"}
    
  • table:
    ksql> print 'expense-test-topic' from beginning;
    Format:AVRO
    30/04/18 16:10:52 BST, pk1, {"EXPENSE_CODE": "EXP001", "EXPENSE_DESC": "Regulatory Deposit"}
    30/04/18 16:10:52 BST, pk2, {"EXPENSE_CODE": "EXP002", "EXPENSE_DESC": "ABC - Sofia"}
    30/04/18 16:10:52 BST, pk3, {"EXPENSE_CODE": "EXP003", "EXPENSE_DESC": "Apple Corporation"}
    30/04/18 16:10:52 BST, pk4, {"EXPENSE_CODE": "EXP004", "EXPENSE_DESC": "Confluent Europe"}
    30/04/18 16:10:52 BST, pk5, {"EXPENSE_CODE": "EXP005", "EXPENSE_DESC": "Air India"}
    30/04/18 16:10:52 BST, pk6, {"EXPENSE_CODE": "EXP006", "EXPENSE_DESC": "KLM International"}
    

  • 此时,请注意,键(pk<x>)与我们将加入的列不匹配
  • 注册两个主题:
    ksql> CREATE STREAM deals WITH (KAFKA_TOPIC='stream-test-topic', VALUE_FORMAT='AVRO');
    
     Message
    ----------------
     Stream created
    ----------------
    
    ksql> CREATE TABLE expense_codes_table WITH (KAFKA_TOPIC='expense-test-topic', VALUE_FORMAT='AVRO', KEY='EXPENSE_CODE');
    
     Message
    ---------------
     Table created
    ---------------
    
  • 告诉KSQL从每个主题的开头查询事件
    ksql> SET 'auto.offset.reset' = 'earliest';
    Successfully changed local property 'auto.offset.reset' from 'null' to 'earliest'
    
  • 验证每个DDL表的声明键(KEY='EXPENSE_CODE')是否与基础Kafka消息的实际键匹配(可通过ROWKEY系统列使用):
    ksql> SELECT ROWKEY, EXPENSE_CODE FROM expense_codes_table;
    pk1 | EXP001
    pk2 | EXP002
    pk3 | EXP003
    pk4 | EXP004
    pk5 | EXP005
    pk6 | EXP006
    

    键不匹配。我们的加盟注定要失败!
  • 魔术解决方法-让我们使用KSQL重新设置主题!
  • 将表的源主题注册为KSQL STREAM:
    ksql> CREATE STREAM expense_codes_stream WITH (KAFKA_TOPIC='expense-test-topic', VALUE_FORMAT='AVRO');
    
     Message
    ----------------
     Stream created
    ----------------
    
  • 创建派生的流,并在正确的列上键入。这由重新设置的Kafka主题来支持。
    ksql> CREATE STREAM EXPENSE_CODES_REKEY AS SELECT * FROM expense_codes_stream PARTITION BY EXPENSE_CODE;
    
     Message
    ----------------------------
     Stream created and running
    ----------------------------
    
  • 在重新键入主题的顶部重新注册KSQL _TABLE_:
    ksql> DROP TABLE expense_codes_table;
    
     Message
    ----------------------------------------
     Source EXPENSE_CODES_TABLE was dropped
    ----------------------------------------
    ksql> CREATE TABLE expense_codes_table WITH (KAFKA_TOPIC='EXPENSE_CODES_REKEY', VALUE_FORMAT='AVRO', KEY='EXPENSE_CODE');
    
     Message
    ---------------
     Table created
    ---------------
    
  • 检查新表上的键(已声明vs消息)是否匹配:
    ksql> SELECT ROWKEY, EXPENSE_CODE FROM expense_codes_table;
    EXP005 | EXP005
    EXP001 | EXP001
    EXP002 | EXP002
    EXP003 | EXP003
    EXP006 | EXP006
    EXP004 | EXP004
    
  • 成功加入:
    ksql> SELECT D.DEAL_EXPENSE_CODE, E.EXPENSE_DESC \
    FROM deals D \
      LEFT JOIN expense_codes_table E \
      ON D.DEAL_EXPENSE_CODE = E.EXPENSE_CODE  \
    WINDOW TUMBLING (SIZE 3 MINUTE) \
    GROUP BY D.DEAL_EXPENSE_CODE, E.EXPENSE_DESC;
    
    EXP006 | KLM International
    EXP003 | Apple Corporation
    EXP002 | ABC - Sofia
    EXP004 | Confluent Europe
    EXP001 | Regulatory Deposit
    EXP005 | Air India
    
  • 09-27 14:54