我已经在Tensorflow(v2.0)Keras中本地训练了一个模型。
现在,我需要将此经过预训练的模型上传到Google Datalab中,以对大量数据进行预测。 Datalab上可用的Tenserflow版本是1.8,但我认为是向后兼容。
我已将保存的模型(model.h5)上传到Google Cloud Storage。我试图将其加载到Datalab的Jupyter Notebook中,如下所示:
%%gcs read --object gs://project-xxx/data/saved_model.h5 --variable ldmodel
model = keras.models.load_model(ldmodel)
这引发了错误:
---------------------------------------------------------------------------
UnicodeDecodeError Traceback (most recent call last)
<ipython-input-18-07c40785a14b> in <module>()
----> 1 model = keras.models.load_model(ldmodel)
/usr/local/envs/py3env/lib/python3.5/site-
packages/tensorflow/python/keras/_impl/keras/engine/saving.py in load_model(filepath,
custom_objects,
compile)
233 return obj
234
--> 235 with h5py.File(filepath, mode='r') as f:
236 # instantiate model
237 model_config = f.attrs.get('model_config')
/usr/local/envs/py3env/lib/python3.5/site-packages/h5py/_hl/files.py in __init__(self, name, mode,
driver, libver, userblock_size, swmr, **kwds)
267 with phil:
268 fapl = make_fapl(driver, libver, **kwds)
--> 269 fid = make_fid(name, mode, userblock_size, fapl, swmr=swmr)
270
271 if swmr_support:
/usr/local/envs/py3env/lib/python3.5/site-packages/h5py/_hl/files.py in make_fid(name, mode,
userblock_size, fapl, fcpl, swmr)
97 if swmr and swmr_support:
98 flags |= h5f.ACC_SWMR_READ
---> 99 fid = h5f.open(name, flags, fapl=fapl)
100 elif mode == 'r+':
101 fid = h5f.open(name, h5f.ACC_RDWR, fapl=fapl)
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/h5f.pyx in h5py.h5f.open()
h5py/defs.pyx in h5py.defs.H5Fopen()
h5py/_errors.pyx in h5py._errors.set_exception()
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x89 in position 29: invalid start byte
任何帮助将不胜感激!
最佳答案
我不会打赌向后兼容。 Here有关它的更多详细信息。
此外,您的版本较旧。 1.8已于2018年4月发布。最新的1(1.15)版本已于上个月发布。
最终,Keras没有很好地集成到Tensorflow的版本1中。 V2会在此级别上进行所有更改,并且您的问题会一直存在此不兼容问题。
关于python - 如何将预训练的Tensorflow模型从Google Cloud Storage加载到Datalab,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/58821870/