我正在对一阶微分方程组的x(t)进行数值求解。系统是:
dy/dt=(C)\*[(-K\*x)+M*A]
我已经实现了Forward Euler方法来解决此问题,如下所示:
这是我的代码:

import matplotlib
import numpy as np
from numpy import *
from numpy import linspace
from matplotlib import pyplot as plt


C=3
K=5
M=2
A=5
#------------------------------------------------------------------------------
def euler (f,x0,t):
    n=len (t)
    x=np.array ([x0*n])
    for i in xrange (n-1):
        x[i+1] = x[i] + ( t[i+1] - t[i] ) * f( x[i], t[i] )
    return x



#---------------------------------------------------------------------------------
if __name__=="__main__":
    from pylab import *

    def f(x,t):
        return (C)*[(-K*x)+M*A]

    a,b=(0.0,10.0)
    n=200
    x0=-1.0
    t=linspace (a,b,n)

    #numerical solutions
    x_euler=euler(f,x0,t)

    #compute true solution values in equal spaced and unequally spaced cases
    x=-C*K
    #figure
    plt.plot (t,x_euler, "b")
    xlabel ()
    ylabel ()
    legend ("Euler")

    show()
`
M=2
A=5
#----------------------------------------------------------------------------
def euler (f,x0,t):
    n=len (t)
    x=np.array ([x0*n])
    for i in xrange (n-1):
        x[i+1] = x[i] + ( t[i+1] - t[i] ) * f( x[i], t[i] )
    return x



#---------------------------------------------------------------------------
if __name__=="__main__":
    from pylab import *

    def f(x,t):
        return (C)*[(-K*x)+M*A]

    a,b=(0.0,10.0)
    n=200
    x0=-1.0
    t=linspace (a,b,n)

    #numerical solutions
    x_euler=euler(f,x0,t)

    #compute true solution values in equal spaced and unequally spaced cases
    x=-C*K
    #figure
    plt.plot (t,x_euler, "b")
    xlabel ()
    ylabel ()
    legend ("Euler")

    show()

我得到以下跟踪:
Traceback (most recent call last):
  File "C:/Python27/testeuler.py", line 50, in <module>
    x_euler=euler(f,x0,t)
  File "C:/Python27/testeuler.py", line 28, in euler
    x[i+1] = x[i] + ( t[i+1] - t[i] ) * f( x[i], t[i] )
IndexError: index 1 is out of bounds for axis 0 with size 1

我不明白这可能是什么问题。我已经在解决问题后抬头,但这无济于事。您能找到我的错误吗?
我正在使用以下代码作为方向:
def euler(f,x0,t):
    n = len( t )
    x = numpy.array( [x0] * n )
    for i in xrange( n - 1 ):
        x[i+1] = x[i] + ( t[i+1] - t[i] ) * f( x[i], t[i] )

    return x
if __name__ == "__main__":
    from pylab import *

    def f( x, t ):
        return x * numpy.sin( t )

    a, b = ( 0.0, 10.0 )
    x0 = -1.0

    n = 51
    t = numpy.linspace( a, b, n )

    x_euler = euler( f, x0, t )

我的目标是绘制函数。

最佳答案

正如Traceback所说,问题来自x[i+1] = x[i] + ( t[i+1] - t[i] ) * f( x[i], t[i] )行。让我们在上下文中替换它:

  • x是一个等于[x0 * n]的数组,因此其长度为1
  • 您正在从0迭代到n-2(此处n无关紧要),而i是索引。最初,一切正常(这里显然没有开始... :(),但是一旦i + 1 >= len(x) i >= 0,元素x[i+1]不存在。在这里,此元素自开始以来就不存在。 for循环。

  • 要解决此问题,必须将x[i+1] = x[i] + ( t[i+1] - t[i] ) * f( x[i], t[i] )替换为x.append(x[i] + ( t[i+1] - t[i] ) * f( x[i], t[i] ))

    关于python - IndexError:索引1超出了大小为1/ForwardEuler的轴0的范围,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/30059227/

    10-12 22:20