我正在从这种格式的 excel 中提取数据

 product1   | unnamedcol2 | product2  | unnamedcol4 | product3  | unnamedcol6 |
-------------------------------------------------------------------------------
 @1foo      |        1.10 | @1foo     |         0.3 | @1foo     |         0.3
 @2foo      |        1.00 | @2foo     |           2 | @2foo     |
 @3foo      |        1.52 | @3foo     |        2.53 | @3foo     |
 @4foo      |        1.47 |           |             | @4foo     |        1.31
 @5foo      |        1.49 |           |             | @5foo     |        1.31

The file uses all 255 fields. Using dapper-dot-net i get the data through this code

IEnumerable<IDictionary<string, object>> excelDataRaw =
                conn.Query(string.Format("select * from {0}", table)).Cast<IDictionary<string, object>>();

我将这些数据传递给这些测试方法。数据作为 IDictionaries 的 IEnumerable 返回,其中每个键是一个产品,每个值都是一个 IDictionary,其中每个键是来自产品列的值,对应的值是来自产品列右侧的 unnamedcol 的值。
var excelDataRefined = new List<IDictionary<string, IDictionary<string, decimal>>>();
excelDataRefined.Add(new Dictionary<string, IDictionary<string, decimal>>());
excelDataRefined[0].Add( "product", new Dictionary<string, decimal>());
excelDataRefined[0]["product"].Add("@1foo", 1.1m);

方法:
private static Dictionary<string, IDictionary<string, decimal>> Benchmark_foreach(IEnumerable<IDictionary<string, object>> excelDataRaw)
{
    Console.WriteLine("1. Using foreach");
    var watch = new Stopwatch();
    watch.Start();

    List<string> headers = excelDataRaw.Select(dictionary => dictionary.Keys).First().ToList();
    bool isEven = false;
    List<string> products = headers.Where(h => isEven = !isEven).ToList();
    var dates = new List<IEnumerable<object>>();
    var prices = new List<IEnumerable<object>>();

    foreach (string field in headers)
    {
        string product1 = field;
        if (headers.IndexOf(field) % 2 == 0)
        {
            dates.Add(
                excelDataRaw.AsParallel().AsOrdered().Select(col => col[product1]).Where(row => row != null));
        }

        if (headers.IndexOf(field) % 2 == 1)
        {
            prices.Add(
                excelDataRaw.AsParallel().AsOrdered().Select(col => col[product1] ?? 0m).Take(dates.Last().Count()));
        }
    }

    watch.Stop();
    Console.WriteLine("Rearange the data in: {0}s", watch.Elapsed.TotalSeconds);
    watch.Restart();

    var excelDataRefined = new Dictionary<string, IDictionary<string, decimal>>();
    foreach (IEnumerable<object> datelist in dates)
    {
        decimal num;
        IEnumerable<object> datelist1 = datelist;
        IEnumerable<object> pricelist =
            prices[dates.IndexOf(datelist1)].Select(value => value ?? 0m).Where(
                content => decimal.TryParse(content.ToString(), out num));
        Dictionary<string, decimal> dict =
            datelist1.Zip(pricelist, (k, v) => new { k, v }).ToDictionary(
                x => (string)x.k, x => decimal.Parse(x.v.ToString()));

        if (!excelDataRefined.ContainsKey(products[dates.IndexOf(datelist1)]))
        {
            excelDataRefined.Add(products[dates.IndexOf(datelist1)], dict);
        }
    }

    watch.Stop();
    Console.WriteLine("Zipped the data in: {0}s", watch.Elapsed.TotalSeconds);

    return excelDataRefined;
}

private static Dictionary<string, IDictionary<string, decimal>> Benchmark_AsParallel(IEnumerable<IDictionary<string, object>> excelDataRaw)
{
    Console.WriteLine("2. Using AsParallel().AsOrdered().ForAll");
    var watch = new Stopwatch();
    watch.Start();

    List<string> headers = excelDataRaw.Select(dictionary => dictionary.Keys).First().ToList();
    bool isEven = false;
    List<string> products = headers.Where(h => isEven = !isEven).ToList();
    var dates = new List<IEnumerable<object>>();
    var prices = new List<IEnumerable<object>>();

    headers.AsParallel().AsOrdered().ForAll(
        field =>
        dates.Add(
            excelDataRaw.AsParallel().AsOrdered().TakeWhile(x => headers.IndexOf(field) % 2 == 0).Select(
                col => col[field]).Where(row => row != null).ToList()));
    headers.AsParallel().AsOrdered().ForAll(
        field =>
        prices.Add(
            excelDataRaw.AsParallel().AsOrdered().TakeWhile(x => headers.IndexOf(field) % 2 == 1).Select(
                col => col[field] ?? 0m).Take(256).ToList()));
    dates.RemoveAll(x => x.Count() == 0);
    prices.RemoveAll(x => x.Count() == 0);

    watch.Stop();
    Console.WriteLine("Rearange the data in: {0}s", watch.Elapsed.TotalSeconds);
    watch.Restart();

    var excelDataRefined = new Dictionary<string, IDictionary<string, decimal>>();
    foreach (IEnumerable<object> datelist in dates)
    {
        decimal num;
        IEnumerable<object> datelist1 = datelist;
        IEnumerable<object> pricelist =
            prices[dates.IndexOf(datelist1)].Select(value => value ?? 0m).Where(
                content => decimal.TryParse(content.ToString(), out num));
        Dictionary<string, decimal> dict =
            datelist1.Zip(pricelist, (k, v) => new { k, v }).ToDictionary(
                x => (string)x.k, x => decimal.Parse(x.v.ToString()));

        if (!excelDataRefined.ContainsKey(products[dates.IndexOf(datelist1)]))
        {
            excelDataRefined.Add(products[dates.IndexOf(datelist1)], dict);
        }
    }

    watch.Stop();
    Console.WriteLine("Zipped the data in: {0}s", watch.Elapsed.TotalSeconds);

    return excelDataRefined;
}

private static Dictionary<string, IDictionary<string, decimal>> Benchmark_ForEach(IEnumerable<IDictionary<string, object>> excelDataRaw)
{
    Console.WriteLine("3. Using ForEach");
    var watch = new Stopwatch();
    watch.Start();

    List<string> headers = excelDataRaw.Select(dictionary => dictionary.Keys).First().ToList();
    bool isEven = false;
    List<string> products = headers.Where(h => isEven = !isEven).ToList();
    var dates = new List<IEnumerable<object>>();
    var prices = new List<IEnumerable<object>>();

    headers.ForEach(
        field =>
        dates.Add(
            excelDataRaw.TakeWhile(x => headers.IndexOf(field) % 2 == 0).Select(col => col[field]).Where(
                row => row != null).ToList()));
    headers.ForEach(
        field =>
        prices.Add(
            excelDataRaw.TakeWhile(x => headers.IndexOf(field) % 2 == 1).Select(col => col[field] ?? 0m).
            Take(256).ToList()));
    dates.RemoveAll(x => x.Count() == 0);
    prices.RemoveAll(x => x.Count() == 0);

    watch.Stop();
    Console.WriteLine("Rearange the data in: {0}s", watch.Elapsed.TotalSeconds);
    watch.Restart();

    var excelDataRefined = new Dictionary<string, IDictionary<string, decimal>>();
    foreach (IEnumerable<object> datelist in dates)
    {
        decimal num;
        IEnumerable<object> datelist1 = datelist;
        IEnumerable<object> pricelist =
            prices[dates.IndexOf(datelist1)].Select(value => value ?? 0m).Where(
                content => decimal.TryParse(content.ToString(), out num));
        Dictionary<string, decimal> dict =
            datelist1.Zip(pricelist, (k, v) => new { k, v }).ToDictionary(
                x => (string)x.k, x => decimal.Parse(x.v.ToString()));

        if (!excelDataRefined.ContainsKey(products[dates.IndexOf(datelist1)]))
        {
            excelDataRefined.Add(products[dates.IndexOf(datelist1)], dict);
        }
    }

    watch.Stop();
    Console.WriteLine("Zipped the data in: {0}s", watch.Elapsed.TotalSeconds);

    return excelDataRefined;
}
  • Benchmark_foreach 需要应用程序。 3,5s 重新排列和 3s 压缩数据。
  • Benchmark_AsParallel 需要应用程序。 12s 重新排列和 0,005s 压缩数据。
  • Benchmark_ForEach 需要应用程序。 16s 重新排列和 0,005s 压缩数据。

  • 为什么它的行为是这样的?我希望 AsParallel 是最快的,因为它并行执行而不是顺序执行。我如何优化这个?

    最佳答案

    为了进行并行计算,您必须拥有多个处理器或内核,否则您只是在线程池中排队等待 CPU 的任务。 IE。单核机器上的 AsParallel 是顺序的,加上线程池和线程上下文切换的开销。即使在双核机器上,您也可能无法同时获得两个核心,因为许多其他东西都在同一台机器上运行。

    真正的 .AsParallel() 只有在您长时间运行带有阻塞操作 (I/O) 的任务时才有用,操作系统可以挂起阻塞线程并让另一个线程运行。

    关于c# - 为什么在这种情况下使用 AsParallel() 比 foreach 慢?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/7176828/

    10-10 13:58