请考虑以下类型签名:
data Foo x = Foo {
name :: String
, reader :: String -> x
}
instance Functor Foo where
fmap f (Foo n r) = Foo n $ f . r
现在,我展示了从
Foo
到optparse-applicative
的Parser
类型的自然转换:import qualified Options.Applicative as CL
mkParser :: Foo a -> CL.Parser a
mkParser (Foo n _) = CL.option CL.disabled ( CL.long n )
(好吧,这没什么用,但将用于讨论)。
现在,我将
Bar
替换为Foo
的免费替代函子:type Bar a = Alt Foo a
鉴于这是一个免费的函子,我应该能够将
mkParser
提升为从Bar
到Parser
的自然转换:foo :: String -> (String -> x) -> Bar x
foo n r = liftAlt $ Foo n r
myFoo :: Bar [String]
myFoo = many $ foo "Hello" (\_ -> "Hello")
clFoo :: CL.Parser [String]
clFoo = runAlt mkParser $ myFoo
确实,这可行,并且给了我
Parser
。但是,这是一个非常无用的方法,因为尝试对其执行很多操作会导致无限循环。例如,如果我尝试描述一下:CL.cmdDesc clFoo
> Chunk {unChunk =
并挂起直到被打断。
原因似乎是
optparse-applicative
和many
的定义中的some
cheats:它在幕后使用了monadic解析。我在这里做错什么了吗?鉴于此,我不知道如何以这种方式构造解析器。有任何想法吗?
最佳答案
如注释中所指出的,您必须显式处理many
。从 Earley
复制的方法:
#!/usr/bin/env stack
-- stack --resolver=lts-5.3 runghc --package optparse-applicative
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ScopedTypeVariables #-}
import Control.Applicative
import qualified Options.Applicative as CL
import qualified Options.Applicative.Help.Core as CL
data Alt f a where
Pure :: a -> Alt f a
Ap :: f a -> Alt f (a -> b) -> Alt f b
Alt :: [Alt f a] -> Alt f (a -> b) -> Alt f b
Many :: Alt f a -> Alt f ([a] -> b) -> Alt f b
instance Functor (Alt f) where
fmap f (Pure x) = Pure $ f x
fmap f (Ap x g) = Ap x $ fmap (f .) g
fmap f (Alt x g) = Alt x $ fmap (f .) g
fmap f (Many x g) = Many x $ fmap (f .) g
instance Applicative (Alt f) where
pure = Pure
Pure f <*> y = fmap f y
Ap x f <*> y = Ap x $ flip <$> f <*> y
Alt xs f <*> y = Alt xs $ flip <$> f <*> y
Many x f <*> y = Many x $ flip <$> f <*> y
instance Alternative (Alt f) where
empty = Alt [] (pure id)
a <|> b = Alt [a, b] (pure id)
many x = Many x (pure id)
-- | Given a natural transformation from @f@ to @g@, this gives a canonical monoidal natural transformation from @'Alt' f@ to @g@.
runAlt :: forall f g a. Alternative g => (forall x. f x -> g x) -> Alt f a -> g a
runAlt u = go where
go :: forall b. Alt f b -> g b
go (Pure x) = pure x
go (Ap x f) = flip id <$> u x <*> go f
go (Alt xs f) = flip id <$> foldr (<|>) empty (map go xs) <*> go f
go (Many x f) = flip id <$> many (go x) <*> go f
-- | A version of 'lift' that can be used with just a 'Functor' for @f@.
liftAlt :: (Functor f) => f a -> Alt f a
liftAlt x = Ap x (Pure id)
mkParser :: Foo a -> CL.Parser a
mkParser (Foo n r) = CL.option (CL.eitherReader $ Right . r) ( CL.long n CL.<> CL.help n )
data Foo x = Foo {
name :: String
, reader :: String -> x
}
instance Functor Foo where
fmap f (Foo n r) = Foo n $ f . r
type Bar a = Alt Foo a
foo :: String -> (String -> x) -> Bar x
foo n r = liftAlt $ Foo n r
myFoo :: Bar [String]
myFoo = many $ foo "Hello" (\_ -> "Hello")
clFoo :: CL.Parser [String]
clFoo = runAlt mkParser $ myFoo
main :: IO ()
main = do
print $ CL.cmdDesc clFoo
print $ CL.cmdDesc $ mkParser (Foo "Hello" $ \_ -> "Hello")
关于haskell - 从免费的替代仿函数生成optparse适用的解析器,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/26718443/