我有一个数据集看起来像这样:
data.flu <- data.frame(chills = c(1,1,1,0,0,0,0,1), runnyNose = c(0,1,0,1,0,1,1,1), headache = c("M", "N", "S", "M", "N", "S", "S", "M"), fever = c(1,0,1,1,0,1,0,1), flu = c(0,1,1,1,0,1,0,1) )
> data.flu
chills runnyNose headache fever flu
1 1 0 M 1 0
2 1 1 N 0 1
3 1 0 S 1 1
4 0 1 M 1 1
5 0 0 N 0 0
6 0 1 S 1 1
7 0 1 S 0 0
8 1 1 M 1 1
> str(data.flu)
'data.frame': 8 obs. of 5 variables:
$ chills : num 1 1 1 0 0 0 0 1
$ runnyNose: num 0 1 0 1 0 1 1 1
$ headache : Factor w/ 3 levels "M","N","S": 1 2 3 1 2 3 3 1
$ fever : num 1 0 1 1 0 1 0 1
$ flu : num 0 1 1 1 0 1 0 1
为什么
predict
函数什么都没给我返回?# I can see the model has been successfully created.
model <- naiveBayes(flu~., data=data.flu)
# I created a new data
patient <- data.frame(chills = c(1), runnyNose = c(0), headache = c("M"), fever = c(1))
> predict(model, patient)
factor(0)
Levels:
# I tried with the training data, still won't work
> predict(model, data.flu[,-5])
factor(0)
Levels:
我尝试按照naiveBayes的帮助手册中的示例进行操作,它对我有用。我不确定我的方法有什么问题。非常感谢!
我认为在应用naivebayes模型之前数据类型可能有问题,我尝试使用
as.factor
更改所有变量以分解为因子,这似乎对我有用。但是我仍然对幕后的“如何”和“为什么”感到非常困惑。 最佳答案
问题不在于predict()
函数,而在于您的模型定义。naiveBayes()
的帮助文件说:
Computes the conditional a-posterior probabilities of a categorical class variable
given independent predictor variables using the Bayes rule.
因此,y值应该是分类的,但在您的情况下,它们是数字。
解决方案是将
flu
转换为factor。model <- naiveBayes(as.factor(flu)~., data=data.flu)
predict(model, patient)
[1] 1
Levels: 0 1