ConcurrentHashMap通常用于并发环境中,以聚合某个键下的某些事件-例如为某些字符串值计算命中数。如果我们不预先知道 key ,我们需要一种好的方法来根据需要初始化 key ,就并发性而言,它应该是快速而安全的。
解决此问题的最佳方式是什么(就效率而言)?

我将使用声明为<String, AtomicInteger>的模型映射:

ConcurrentHashMap<String, AtomicInteger> map = new ConcurrentHashMap<>();

但是它可能是具有任何键值对的映射,如果键在映射中尚不存在,则需要初始化一个键值对,并更改值的状态以记录事件。

有两种流行的方法:
第一个使用ConcurrentHashMap.putIfAbsent:
AtomicInteger count = map.get(s);
if (count == null) {
    count = new AtomicInteger(0);
    AtomicInteger prevCount = map.putIfAbsent(s, count);
    if (prevCount != null) {
        count = prevCount;
    }
}
count.incrementAndGet();

第二个使用ConcurrentHashMap.computeIfAbsent:
AtomicInteger count = map.computeIfAbsent(s, (k) -> new AtomicInteger(0));
count.incrementAndGet();

哪一个更适合此任务?还有其他方法吗?

最佳答案

不幸的是,直到jdk1.8.0_131为止,computeIfAbsent始终进入synchronized块,无论 key 是否已存在,这都比putIfAbsent慢。

该基准测试证实了这一点,看来putIfAbsent取决于竞争级别比computeIfAbsent快2到50倍。

import java.util.Random;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;

public class ConcurrentHashMapTest {
    private final static int numberOfRuns = 1000000;
    private final static int numberOfThreads = Runtime.getRuntime().availableProcessors();
    private final static int keysSize = 10;
    private final static String[] strings = new String[keysSize];
    static {
        for (int n = 0; n < keysSize; n++) {
            strings[n] = "" + (char) ('A' + n);
        }
    }

    public static void main(String[] args) throws InterruptedException {
        for (int n = 0; n < 20; n++) {
            testPutIfAbsent();
            testComputeIfAbsentLambda();
        }
    }

    private static void testPutIfAbsent() throws InterruptedException {
        final AtomicLong totalTime = new AtomicLong();
        final ConcurrentHashMap<String, AtomicInteger> map = new ConcurrentHashMap<String, AtomicInteger>();
        final Random random = new Random();
        ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads);

        for (int i = 0; i < numberOfThreads; i++) {
            executorService.execute(new Runnable() {
                @Override
                public void run() {
                    long start, end;
                    for (int n = 0; n < numberOfRuns; n++) {
                        String s = strings[random.nextInt(strings.length)];
                        start = System.nanoTime();

                        AtomicInteger count = map.get(s);
                        if (count == null) {
                            count = new AtomicInteger(0);
                            AtomicInteger prevCount = map.putIfAbsent(s, count);
                            if (prevCount != null) {
                                count = prevCount;
                            }
                        }
                        count.incrementAndGet();
                        end = System.nanoTime();
                        totalTime.addAndGet(end - start);
                    }
                }
            });
        }
        executorService.shutdown();
        executorService.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
        System.out.println("Test " + Thread.currentThread().getStackTrace()[1].getMethodName()
                + " average time per run: " + (double) totalTime.get() / numberOfThreads / numberOfRuns + " ns");
    }

    private static void testComputeIfAbsentLambda() throws InterruptedException {
        final AtomicLong totalTime = new AtomicLong();
        final ConcurrentHashMap<String, AtomicInteger> map = new ConcurrentHashMap<String, AtomicInteger>();
        final Random random = new Random();
        ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads);
        for (int i = 0; i < numberOfThreads; i++) {
            executorService.execute(new Runnable() {
                @Override
                public void run() {
                    long start, end;
                    for (int n = 0; n < numberOfRuns; n++) {
                        String s = strings[random.nextInt(strings.length)];
                        start = System.nanoTime();

                        AtomicInteger count = map.computeIfAbsent(s, (k) -> new AtomicInteger(0));
                        count.incrementAndGet();

                        end = System.nanoTime();
                        totalTime.addAndGet(end - start);
                    }
                }
            });
        }
        executorService.shutdown();
        executorService.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
        System.out.println("Test " + Thread.currentThread().getStackTrace()[1].getMethodName()
                + " average time per run: " + (double) totalTime.get() / numberOfThreads / numberOfRuns + " ns");
    }

}

输出:
Test testPutIfAbsent average time per run: 115.756501 ns
Test testComputeIfAbsentLambda average time per run: 276.9667055 ns
Test testPutIfAbsent average time per run: 134.2332435 ns
Test testComputeIfAbsentLambda average time per run: 223.222063625 ns
Test testPutIfAbsent average time per run: 119.968893625 ns
Test testComputeIfAbsentLambda average time per run: 216.707419875 ns
Test testPutIfAbsent average time per run: 116.173902375 ns
Test testComputeIfAbsentLambda average time per run: 215.632467375 ns
Test testPutIfAbsent average time per run: 112.21422775 ns
Test testComputeIfAbsentLambda average time per run: 210.29563725 ns
Test testPutIfAbsent average time per run: 120.50643475 ns
Test testComputeIfAbsentLambda average time per run: 200.79536475 ns

我们可以使用putIfAbsent方法来创建更快的computeIfAbsent
唯一的不同是,在同时初始化同一 key 的情况下,此新的computeIfAbsent可以多次调用initialization function。基准测试结果与“putIfAbsent”相同,因为它是相同的代码,这并不奇怪,但是万一有人想测试一下,这里是基准测试:
import java.util.Random;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.Function;

public class CocnurrentHashMap2Benchmark {
    private final static int numberOfRuns = 1000000;
    private final static int numberOfThreads = Runtime.getRuntime().availableProcessors();
    private final static int keysSize = 10;
    private final static String[] strings = new String[keysSize];
    static {
        for (int n = 0; n < keysSize; n++) {
            strings[n] = "" + (char) ('A' + n);
        }
    }

    public static void main(String[] args) throws InterruptedException {
        for (int n = 0; n < 20; n++) {
            testPutIfAbsent();
            testComputeIfAbsent2Lambda();
        }
    }

    private static void testPutIfAbsent() throws InterruptedException {
        final AtomicLong totalTime = new AtomicLong();
        final ConcurrentHashMap<String, AtomicInteger> map = new ConcurrentHashMap<String, AtomicInteger>();
        final Random random = new Random();
        ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads);

        for (int i = 0; i < numberOfThreads; i++) {
            executorService.execute(new Runnable() {
                @Override
                public void run() {
                    long start, end;
                    for (int n = 0; n < numberOfRuns; n++) {
                        String s = strings[random.nextInt(strings.length)];
                        start = System.nanoTime();

                        AtomicInteger count = map.get(s);
                        if (count == null) {
                            count = new AtomicInteger(0);
                            AtomicInteger prevCount = map.putIfAbsent(s, count);
                            if (prevCount != null) {
                                count = prevCount;
                            }
                        }
                        count.incrementAndGet();
                        end = System.nanoTime();
                        totalTime.addAndGet(end - start);
                    }
                }
            });
        }
        executorService.shutdown();
        executorService.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
        System.out.println("Test " + Thread.currentThread().getStackTrace()[1].getMethodName()
                + " average time per run: " + (double) totalTime.get() / numberOfThreads / numberOfRuns + " ns");
    }


     private static void testComputeIfAbsent2Lambda() throws InterruptedException {
            final AtomicLong totalTime = new AtomicLong();
            final ConcurrentHashMap2<String, AtomicInteger> map = new ConcurrentHashMap2<String, AtomicInteger>();
            final Random random = new Random();
            ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads);
            for (int i = 0; i < numberOfThreads; i++) {
                executorService.execute(new Runnable() {
                    @Override
                    public void run() {
                        long start, end;
                        for (int n = 0; n < numberOfRuns; n++) {
                            String s = strings[random.nextInt(strings.length)];
                            start = System.nanoTime();

                            AtomicInteger count = map.computeIfAbsent2(s, (k) -> new AtomicInteger(0));
                            count.incrementAndGet();

                            end = System.nanoTime();
                            totalTime.addAndGet(end - start);
                        }
                    }
                });
            }
            executorService.shutdown();
            executorService.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
            System.out.println("Test " + Thread.currentThread().getStackTrace()[1].getMethodName()
                    + " average time per run: " + (double) totalTime.get() / numberOfThreads / numberOfRuns + " ns");
        }

        public static class ConcurrentHashMap2<K,V> extends ConcurrentHashMap<K,V> {

            /**
             * If there is no mapping for the key then computes and puts the mapping,
             * otherwise it simply return the value for that key.
             * In case of concurrent initialization of the same key the mappingFunction can be called more than once.
             * @param key - the key to be initialized or retrieved
             * @param mappingFunction - the function to be called for computation of initial value.
             * @return computed value if the key wasn't already in the map otherwise return the actual value for provided key.
             */
            public V computeIfAbsent2(K key, Function<K,V> mappingFunction) {
                V value = get(key);
                if (value == null) {
                    value = mappingFunction.apply(key);
                    V prevValue = putIfAbsent(key, value);
                    if (prevValue != null) {
                        value = prevValue;
                    }
                }
                return value;
            }
        }
}

结果:
Test testComputeIfAbsent2Lambda average time per run: 138.1053415 ns
Test testPutIfAbsent average time per run: 129.45236425 ns
Test testComputeIfAbsent2Lambda average time per run: 128.48006825 ns
Test testPutIfAbsent average time per run: 118.733798375 ns
Test testComputeIfAbsent2Lambda average time per run: 134.038046625 ns
Test testPutIfAbsent average time per run: 119.7947695 ns
Test testComputeIfAbsent2Lambda average time per run: 134.183876375 ns
Test testPutIfAbsent average time per run: 137.969932625 ns
Test testComputeIfAbsent2Lambda average time per run: 137.97531275 ns
Test testPutIfAbsent average time per run: 136.904379125 ns
Test testComputeIfAbsent2Lambda average time per run: 148.899750125 ns
Test testPutIfAbsent average time per run: 129.788293125 ns
Test testComputeIfAbsent2Lambda average time per run: 141.50586625 ns
Test testPutIfAbsent average time per run: 129.081558875 ns
Test testComputeIfAbsent2Lambda average time per run: 122.36628625 ns
Test testPutIfAbsent average time per run: 127.1215535 ns
Test testComputeIfAbsent2Lambda average time per run: 108.129917625 ns
Test testPutIfAbsent average time per run: 133.630786875 ns
Test testComputeIfAbsent2Lambda average time per run: 134.978805625 ns
Test testPutIfAbsent average time per run: 132.7747585 ns
Test testComputeIfAbsent2Lambda average time per run: 132.4352885 ns
Test testPutIfAbsent average time per run: 133.753792875 ns
Test testComputeIfAbsent2Lambda average time per run: 134.09569175 ns
Test testPutIfAbsent average time per run: 145.610141125 ns
Test testComputeIfAbsent2Lambda average time per run: 139.437622125 ns

如果我们比较当键不存在时将映射放入 map 的速度,那么看来新的“computeIfAbsent2”也要快得多。基准:
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.Function;

public class CocnurrentHashMap2PutBenchmark {
    private final static int numberOfRuns = 1000000;
    private final static int numberOfThreads = Runtime.getRuntime().availableProcessors();

    public static void main(String[] args) throws InterruptedException {
        for (int n = 0; n < 20; n++) {
            testComputeIfAbsent2();
            testComputeIfAbsent();
        }
    }

    private static void testComputeIfAbsent2() throws InterruptedException {
        final AtomicLong totalTime = new AtomicLong();
        final ConcurrentHashMap2<Integer, String> map = new ConcurrentHashMap2<Integer, String>();
        ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads);
        for (int i = 0; i < numberOfThreads; i++) {
            executorService.execute(new Runnable() {
                @Override
                public void run() {
                    long start, end;
                    for (int n = 0; n < numberOfRuns; n++) {
                        Integer key = Integer.valueOf(n);
                        start = System.nanoTime();

                        String value = map.computeIfAbsent2(key, (k) -> "value");

                        end = System.nanoTime();
                        totalTime.addAndGet(end - start);
                    }
                }
            });
        }
        executorService.shutdown();
        executorService.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
        System.out.println("Test " + Thread.currentThread().getStackTrace()[1].getMethodName()
                + " average time per run: " + (double) totalTime.get() / numberOfThreads / numberOfRuns + " ns");
    }

    private static void testComputeIfAbsent() throws InterruptedException {
        final AtomicLong totalTime = new AtomicLong();
        final ConcurrentHashMap<Integer, String> map = new ConcurrentHashMap<Integer, String>();
        ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads);
        for (int i = 0; i < numberOfThreads; i++) {
            executorService.execute(new Runnable() {
                @Override
                public void run() {
                    long start, end;
                    for (int n = 0; n < numberOfRuns; n++) {
                        Integer key = Integer.valueOf(n);
                        start = System.nanoTime();

                        String value = map.computeIfAbsent(key, (k) -> "value");

                        end = System.nanoTime();
                        totalTime.addAndGet(end - start);
                    }
                }
            });
        }
        executorService.shutdown();
        executorService.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS);
        System.out.println("Test " + Thread.currentThread().getStackTrace()[1].getMethodName()
                + " average time per run: " + (double) totalTime.get() / numberOfThreads / numberOfRuns + " ns");
    }

    public static class ConcurrentHashMap2<K, V> extends ConcurrentHashMap<K, V> {

        /**
         * If there is no mapping for the key then computes and puts the
         * mapping, otherwise it simply return the value for that key. In case
         * of concurrent initialization of the same key the mappingFunction can
         * be called more than once.
         *
         * @param key
         *            - the key to be initialized or retrieved
         * @param mappingFunction
         *            - the function to be called for computation of initial
         *            value.
         * @return computed value if the key wasn't already in the map otherwise
         *         return the actual value for provided key.
         */
        public V computeIfAbsent2(K key, Function<K, V> mappingFunction) {
            V value = get(key);
            if (value == null) {
                value = mappingFunction.apply(key);
                V prevValue = putIfAbsent(key, value);
                if (prevValue != null) {
                    value = prevValue;
                }
            }
            return value;
        }
    }
}

结果:
Test testComputeIfAbsent2 average time per run: 445.077932375 ns
Test testComputeIfAbsent average time per run: 784.786391 ns
Test testComputeIfAbsent2 average time per run: 294.10136375 ns
Test testComputeIfAbsent average time per run: 314.8724765 ns
Test testComputeIfAbsent2 average time per run: 236.56533275 ns
Test testComputeIfAbsent average time per run: 350.863664625 ns
Test testComputeIfAbsent2 average time per run: 346.19498275 ns
Test testComputeIfAbsent average time per run: 641.995172625 ns
Test testComputeIfAbsent2 average time per run: 255.441646125 ns
Test testComputeIfAbsent average time per run: 326.399150125 ns
Test testComputeIfAbsent2 average time per run: 275.626666125 ns
Test testComputeIfAbsent average time per run: 201.207314125 ns
Test testComputeIfAbsent2 average time per run: 289.19059725 ns
Test testComputeIfAbsent average time per run: 318.448059 ns
Test testComputeIfAbsent2 average time per run: 225.19701825 ns
Test testComputeIfAbsent average time per run: 306.461814125 ns
Test testComputeIfAbsent2 average time per run: 213.460366 ns
Test testComputeIfAbsent average time per run: 334.325044625 ns
Test testComputeIfAbsent2 average time per run: 256.4048955 ns
Test testComputeIfAbsent average time per run: 256.366700625 ns
Test testComputeIfAbsent2 average time per run: 231.88875575 ns
Test testComputeIfAbsent average time per run: 246.076624 ns
Test testComputeIfAbsent2 average time per run: 222.4649485 ns
Test testComputeIfAbsent average time per run: 266.505719625 ns
Test testComputeIfAbsent2 average time per run: 228.708391375 ns
Test testComputeIfAbsent average time per run: 261.866442625 ns
Test testComputeIfAbsent2 average time per run: 198.614718875 ns
Test testComputeIfAbsent average time per run: 225.43031925 ns
Test testComputeIfAbsent2 average time per run: 300.478359 ns
Test testComputeIfAbsent average time per run: 306.03640225 ns
Test testComputeIfAbsent2 average time per run: 195.0444215 ns
Test testComputeIfAbsent average time per run: 271.461982625 ns
Test testComputeIfAbsent2 average time per run: 224.306529875 ns
Test testComputeIfAbsent average time per run: 334.52790425 ns
Test testComputeIfAbsent2 average time per run: 212.217131625 ns
Test testComputeIfAbsent average time per run: 184.541579125 ns
Test testComputeIfAbsent2 average time per run: 265.417909625 ns
Test testComputeIfAbsent average time per run: 213.9811425 ns
Test testComputeIfAbsent2 average time per run: 298.76602575 ns
Test testComputeIfAbsent average time per run: 347.883728125 ns

关于java - 初始化ConcurrentHashMap的值的最快方法,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/44969543/

10-10 13:23