strand::wrap()
的行为被定义为创建一个仿函数,在调用时将执行 strand::dispatch()
。我最近在我们的一个应用程序中遇到了一个错误,它执行以下序列:
my_great_function(..., s.wrap(a), s.wrap(b));
应用程序保证
s.wrap(a)
创建的仿函数在 s.wrap(b)
之前被调用。但是,存在竞争条件,使得第一个仿函数在链外调用,因此被推迟调用,而第二个仿函数在 链内调用 并立即执行。这违反了应用程序在 a
之前的 b
排序假设,并导致了未定义的行为。使用
strand::post()
而不是 strand::dispatch()
是解决此问题的一种方法,但没有像使用 strand.wrap()
那样简单的方法来完成此操作。我可以创建辅助函数来发布整个链,我想知道是否有更简单的方法? 最佳答案
关于为什么不存在 strand.wrap
的 strand.post
等价物的纯推测:
strand.wrap()
等效项的案例。 strand.wrap()
最常见的用法,它可能是根据 strand.dispatch()
实现的,以优化组合操作的中间处理程序。可以在满足完成条件后立即调用用户的完成处理程序,而不必为延迟调用发布完成处理程序。 最简单的解决方案可能是将链与
my_great_function
和 a
处理程序一起传递给 b
。如果 my_great_function
需要特定的处理程序调用顺序,那么让 my_great_function
保证排序而不是将责任传递给调用者似乎是可以接受的,调用者可能会忽略必要的排序。另一方面,如果 my_great_function
相当通用,并且处理程序需要特定的调用顺序,那么考虑将处理程序一起传递到直接或间接暗示排序的结构中,例如 std::tuple
。虽然这些解决方案都没有提供一般可重用的解决方案,但它可能是最简单的解决方案。官方支持的解决方案是使用自定义处理程序类型,此外还提供通过
asio_handler_invoke
可用的 ADL 函数来说明操作的中间处理程序和完成处理程序。这是一个主要基于 detail/wrapped_handler.hpp 的完整示例:#include <iostream>
#include <boost/asio.hpp>
/// @brief Custom handler wrapper type that will post into its dispatcher.
template <typename Dispatcher,
typename Handler>
class post_handler
{
public:
typedef void result_type;
post_handler(Dispatcher dispatcher, Handler handler)
: dispatcher_(dispatcher),
handler_(handler)
{}
void operator()()
{
dispatcher_.post(handler_);
}
template <typename Arg1>
void operator()(Arg1 arg1)
{
dispatcher_.post(boost::bind(handler_, arg1));
}
template <typename Arg1, typename Arg2>
void operator()(Arg1 arg1, Arg2 arg2)
{
dispatcher_.post(boost::bind(handler_, arg1, arg2));
}
Dispatcher dispatcher_;
Handler handler_;
};
// Custom invocation hooks for post_handler. These must be declared in
// post_handler's associated namespace for proper resolution.
template <typename Function, typename Dispatcher, typename Handler>
inline void asio_handler_invoke(Function& function,
post_handler<Dispatcher, Handler>* this_handler)
{
this_handler->dispatcher_.post(
boost::asio::detail::rewrapped_handler<Function, Handler>(
function, this_handler->handler_));
}
template <typename Function, typename Dispatcher, typename Handler>
inline void asio_handler_invoke(const Function& function,
post_handler<Dispatcher, Handler>* this_handler)
{
this_handler->dispatcher_.post(
boost::asio::detail::rewrapped_handler<Function, Handler>(
function, this_handler->handler_));
}
/// @brief Factory function used to create handlers that post through the
/// dispatcher.
template <typename Dispatcher, typename Handler>
post_handler<Dispatcher, Handler>
wrap_post(Dispatcher dispatcher, Handler handler)
{
return post_handler<Dispatcher, Handler>(dispatcher, handler);
}
/// @brief Convenience factory function used to wrap handlers created from
/// strand.wrap.
template <typename Dispatcher, typename Handler>
post_handler<Dispatcher,
boost::asio::detail::wrapped_handler<Dispatcher, Handler> >
wrap_post(boost::asio::detail::wrapped_handler<Dispatcher, Handler> handler)
{
return wrap_post(handler.dispatcher_, handler);
}
boost::asio::io_service io_service;
boost::asio::strand strand(io_service);
boost::asio::deadline_timer timer(io_service);
void a() { std::cout << "a" << std::endl; }
void b() { std::cout << "b" << std::endl; }
void c() { std::cout << "c" << std::endl; }
void d() { std::cout << "d" << std::endl; }
void noop() {}
void my_great_function()
{
std::cout << "++my_great_function++" << std::endl;
// Standard dispatch.
strand.dispatch(&a);
// Direct wrapping.
wrap_post(strand, &b)();
// Convenience wrapping.
wrap_post(strand.wrap(&c))();
// ADL hooks.
timer.async_wait(wrap_post(strand.wrap(boost::bind(&d))));
timer.cancel();
std::cout << "--my_great_function--" << std::endl;
}
int main()
{
// Execute my_great_function not within a strand. The noop
// is used to force handler invocation within strand.
io_service.post(&my_great_function);
strand.post(&noop);
io_service.run();
io_service.reset();
// Execute my_great_function within a strand.
std::cout << std::endl;
io_service.post(strand.wrap(&my_great_function));
strand.post(&noop);
io_service.run();
}
产生以下输出:
++my_great_function++ --my_great_function-- a b c d ++my_great_function++ a --my_great_function-- b c d
A slightly easier solution that depends on implementation details, is to adapt detail::wrapped_handler
's Dispatcher
type argument. This approach allows for wrapped_handler
s with adapted Dispatcher
types to be transparently used within the rest of Boost.Asio.
/// @brief Class used to adapter the wrapped_handler's Dispatcher type
/// requirement to post handlers instead of dispatching handlers.
template <typename Dispatcher>
struct post_adapter
{
post_adapter(Dispatcher& dispatcher)
: dispatcher_(dispatcher)
{}
template <typename Handler>
void dispatch(const Handler& handler)
{
dispatcher_.post(handler);
}
Dispatcher dispatcher_;
};
/// @brief Factory function used to create handlers that post through an
/// adapted dispatcher.
template <typename Dispatcher, typename Handler>
boost::asio::detail::wrapped_handler<post_adapter<Dispatcher>, Handler>
wrap_post(Dispatcher& dispatcher, Handler handler)
{
typedef post_adapter<Dispatcher> adapter_type;
return boost::asio::detail::wrapped_handler<
adapter_type, Handler>(adapter_type(dispatcher), handler);
}
/// @brief Convenience factory function used to wrap handlers created from
/// strand.wrap.
template <typename Dispatcher, typename Handler>
boost::asio::detail::wrapped_handler<
post_adapter<Dispatcher>,
boost::asio::detail::wrapped_handler<Dispatcher, Handler> >
wrap_post(boost::asio::detail::wrapped_handler<Dispatcher, Handler> handler)
{
return wrap_post(handler.dispatcher_, handler);
}
两种
wrap_post
解决方案都可能引入与定义的 order of handler invocations 相关的复杂程度。