并查集
畅通工程
*Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 84442 Accepted Submission(s): 44884
*
Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
HintHint
Huge input, scanf is recommended.
#include<iostream>
#include<cstdio>
using namespace std;
int pre[10000];
int findd(int a)
{
int x;
while (pre[a]!=a)
{
x=pre[a];
pre[a]=pre[x];
a=x;
}
return a;
}
int uni(int a,int b)
{
int fx=findd(a),fy=findd(b);
if (fx!=fy)
pre[fx]=fy;
}
int main()
{
// freopen("test.in","r",stdin);
// freopen("test.out","w",stdout);
int shuchu=0,n,m,t1,t2;
cin>>n;
while (n!=0)
{
shuchu=0;
cin>>m;
for (int i=1;i<=n;i++)
pre[i]=i;
for (int i=1;i<=m;i++)
{
cin>>t1>>t2;
uni(t1,t2);
}
for (int i=2;i<=n;i++)
{
if (findd(i)!=findd(i-1))
{ uni(i,i-1);
shuchu++;
}
}
cout<<shuchu<<endl;
cin>>n;
}
}