我有一些单色图像(黑白而不是灰度)和一些形状怪异的物体。我正在尝试使用 python27、PIL、scipy 和 numpy 以及以下方法提取每个对象:

  • 在每个连接的对象周围安装一个边界框
  • “提取”每个对象作为一个数组 - 对于每个对象/边界框

  • 我看过 http://www.scipy.org/Cookbook/Watershedhttp://scikits-image.org/docs/dev/auto_examples/plot_contours.html ,它们确实有效,但我特别希望边界框是矩形的,以确保任何“稍微断开”的位都包含在边界框中。理想情况下,要处理断开连接的位(例如左下角的 Blob ),我会有某种阈值控制。关于什么工具箱最适合这个的任何想法?

    最佳答案

    这使用 Joe Kington's find_paws function

    import numpy as np
    import scipy.ndimage as ndimage
    import scipy.spatial as spatial
    import scipy.misc as misc
    import matplotlib.pyplot as plt
    import matplotlib.patches as patches
    
    class BBox(object):
        def __init__(self, x1, y1, x2, y2):
            '''
            (x1, y1) is the upper left corner,
            (x2, y2) is the lower right corner,
            with (0, 0) being in the upper left corner.
            '''
            if x1 > x2: x1, x2 = x2, x1
            if y1 > y2: y1, y2 = y2, y1
            self.x1 = x1
            self.y1 = y1
            self.x2 = x2
            self.y2 = y2
        def taxicab_diagonal(self):
            '''
            Return the taxicab distance from (x1,y1) to (x2,y2)
            '''
            return self.x2 - self.x1 + self.y2 - self.y1
        def overlaps(self, other):
            '''
            Return True iff self and other overlap.
            '''
            return not ((self.x1 > other.x2)
                        or (self.x2 < other.x1)
                        or (self.y1 > other.y2)
                        or (self.y2 < other.y1))
        def __eq__(self, other):
            return (self.x1 == other.x1
                    and self.y1 == other.y1
                    and self.x2 == other.x2
                    and self.y2 == other.y2)
    
    def find_paws(data, smooth_radius = 5, threshold = 0.0001):
        # https://stackoverflow.com/questions/4087919/how-can-i-improve-my-paw-detection
        """Detects and isolates contiguous regions in the input array"""
        # Blur the input data a bit so the paws have a continous footprint
        data = ndimage.uniform_filter(data, smooth_radius)
        # Threshold the blurred data (this needs to be a bit > 0 due to the blur)
        thresh = data > threshold
        # Fill any interior holes in the paws to get cleaner regions...
        filled = ndimage.morphology.binary_fill_holes(thresh)
        # Label each contiguous paw
        coded_paws, num_paws = ndimage.label(filled)
        # Isolate the extent of each paw
        # find_objects returns a list of 2-tuples: (slice(...), slice(...))
        # which represents a rectangular box around the object
        data_slices = ndimage.find_objects(coded_paws)
        return data_slices
    
    def slice_to_bbox(slices):
        for s in slices:
            dy, dx = s[:2]
            yield BBox(dx.start, dy.start, dx.stop+1, dy.stop+1)
    
    def remove_overlaps(bboxes):
        '''
        Return a set of BBoxes which contain the given BBoxes.
        When two BBoxes overlap, replace both with the minimal BBox that contains both.
        '''
        # list upper left and lower right corners of the Bboxes
        corners = []
    
        # list upper left corners of the Bboxes
        ulcorners = []
    
        # dict mapping corners to Bboxes.
        bbox_map = {}
    
        for bbox in bboxes:
            ul = (bbox.x1, bbox.y1)
            lr = (bbox.x2, bbox.y2)
            bbox_map[ul] = bbox
            bbox_map[lr] = bbox
            ulcorners.append(ul)
            corners.append(ul)
            corners.append(lr)
    
        # Use a KDTree so we can find corners that are nearby efficiently.
        tree = spatial.KDTree(corners)
        new_corners = []
        for corner in ulcorners:
            bbox = bbox_map[corner]
            # Find all points which are within a taxicab distance of corner
            indices = tree.query_ball_point(
                corner, bbox_map[corner].taxicab_diagonal(), p = 1)
            for near_corner in tree.data[indices]:
                near_bbox = bbox_map[tuple(near_corner)]
                if bbox != near_bbox and bbox.overlaps(near_bbox):
                    # Expand both bboxes.
                    # Since we mutate the bbox, all references to this bbox in
                    # bbox_map are updated simultaneously.
                    bbox.x1 = near_bbox.x1 = min(bbox.x1, near_bbox.x1)
                    bbox.y1 = near_bbox.y1 = min(bbox.y1, near_bbox.y1)
                    bbox.x2 = near_bbox.x2 = max(bbox.x2, near_bbox.x2)
                    bbox.y2 = near_bbox.y2 = max(bbox.y2, near_bbox.y2)
        return set(bbox_map.values())
    
    if __name__ == '__main__':
        fig = plt.figure()
        ax = fig.add_subplot(111)
    
        data = misc.imread('image.png')
        im = ax.imshow(data)
        data_slices = find_paws(255-data, smooth_radius = 20, threshold = 22)
    
        bboxes = remove_overlaps(slice_to_bbox(data_slices))
        for bbox in bboxes:
            xwidth = bbox.x2 - bbox.x1
            ywidth = bbox.y2 - bbox.y1
            p = patches.Rectangle((bbox.x1, bbox.y1), xwidth, ywidth,
                                  fc = 'none', ec = 'red')
            ax.add_patch(p)
    
        plt.show()
    

    产量

    关于python - 使用python在单色图像中围绕 Blob 的矩形​​边界框,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/9525313/

    10-12 20:42