目前,我尝试使用GPyOpt最小化功能并获得优化的参数。

import GPy
import GPyOpt
from math import log
def f(x):
    x0,x1,x2,x3,x4,x5 = x[:,0],x[:,1],x[:,2],x[:,3],x[:,4],x[:,5],
    f0 = 0.2 * log(x0)
    f1 = 0.3 * log(x1)
    f2 = 0.4 * log(x2)
    f3 = 0.2 * log(x3)
    f4 = 0.5 * log(x4)
    f5 = 0.2 * log(x5)
    return -(f0 + f1 + f2 + f3 + f4 + f5)

bounds = [
    {'name': 'x0', 'type': 'discrete', 'domain': (1,1000000)},
    {'name': 'x1', 'type': 'discrete', 'domain': (1,1000000)},
    {'name': 'x2', 'type': 'discrete', 'domain': (1,1000000)},
    {'name': 'x3', 'type': 'discrete', 'domain': (1,1000000)},
    {'name': 'x4', 'type': 'discrete', 'domain': (1,1000000)},
    {'name': 'x5', 'type': 'discrete', 'domain': (1,1000000)}
]

myBopt = GPyOpt.methods.BayesianOptimization(f=f, domain=bounds)
myBopt.run_optimization(max_iter=100)
print(myBopt.x_opt)
print(myBopt.fx_opt)


我想为此功能添加限制条件。
这是一个例子。

x0 + x1 + x2 + x3 + x4 + x5 == 100000000


我应该如何修改此代码?

最佳答案

GPyOpt仅支持c(x0, x1, ..., xn) <= 0形式的约束,因此,您最好的做法是选择一个足够小的值,并将其“约束”在其中。假设0.1足够小,那么您可以这样做:

(x0 + x1 + x2 + x3 + x4 + x5) - 100000000 <= 0.1
(x0 + x1 + x2 + x3 + x4 + x5) - 100000000 >= -0.1


然后

(x0 + x1 + x2 + x3 + x4 + x5) - 100000000 - 0.1 <= 0
100000000 - (x0 + x1 + x2 + x3 + x4 + x5) - 0.1 <= 0


该API如下所示:

constraints = [
    {
        'name': 'constr_1',
        'constraint': '(x[:,0] + x[:,1] + x[:,2] + x[:,3] + x[:,4] + x[:,5]) - 100000000 - 0.1'
    },
    {
        'name': 'constr_2',
        'constraint': '100000000 - (x[:,0] + x[:,1] + x[:,2] + x[:,3] + x[:,4] + x[:,5]) - 0.1'
    }
]

myBopt = GPyOpt.methods.BayesianOptimization(f=f, domain=bounds, constraints = constraints)

07-28 04:56