我仍在解决this problem,它取自当前的“ Google Foobar”挑战。它是“ Lights Out”游戏的一种变体,其中按下一个灯光将翻转同一行和同一列上每个灯光的状态。
我以前尝试过using a BFS,结果对于n> 6来说太慢了,而我需要处理2
我使用@Aryabhata概述的strategy来找到某些系统Ax = b的特殊解决方案x',该解决方案可以与此问题的实例相关联(有关详细信息,请参见here)。
找到A的零位空间的base后,我计算x'的所有和以及基向量的线性组合。
这些和的集合是原始问题的所有解决方案的集合,因此我可以通过蛮力找到达到最小值的解决方案。
应该注意的是,即使对于n个,零空间也是空的(A是可逆的),因此x'达到了最小值,因为它是唯一的解决方案。如果n为奇数,则空空间基数中的向量数为2n-2,因此搜索空间的大小为2 ^(2n-2),在最坏的情况下(n = 15)为2 ^ 28。
这是我的程序:
from itertools import product
MEMO = {}
def bits(iterable):
bit = 1
res = 0
for elem in iterable:
if elem:
res |= bit
bit <<= 1
return res
def mask(current, n):
if (current, n) in MEMO:
return MEMO[(current, n)]
result = 0
if current < n:
for j in xrange(n):
result += (2 ** ((current - 1)*n + j) + 2 ** (current*n + j))
else:
for i in xrange(n):
result += (2 ** (i*n + current - n) + 2 ** (i*n + current - n + 1))
MEMO[(current, n)] = result
return result
# See: https://math.stackexchange.com/a/441697/4471
def check(matrix, n):
parities = [sum(row) % 2 for row in matrix]
for i in xrange(n):
parities.append(sum([row[i] for row in matrix]) % 2)
return len(set(parities)) == 1
def minimize(matrix, current, n):
if current == 0:
# See: https://stackoverflow.com/a/9831671/374865
return bin(matrix).count("1")
else:
return min(minimize(matrix ^ mask(current, n), current - 1, n),
minimize(matrix, current - 1, n))
def solve(matrix, n):
result = [0 for i in xrange(n) for j in xrange(n)]
for i, j in product(xrange(n), repeat=2):
if matrix[i][j]:
for k in xrange(n):
result[i*n + k] ^= 1
result[k*n + j] ^= 1
result[i*n + j] ^= 1
if n % 2 == 0:
return sum(result)
else:
return minimize(bits(result), 2*n - 2, n)
def answer(matrix):
n = len(matrix)
if n % 2 == 0:
return solve(matrix, n)
else:
if check(matrix, n):
return solve(matrix, n)
else:
return -1
我已经尝试过对其进行优化:例如,矩阵通过函数
bits
编码为二进制数,而函数mask
创建用于将基数的单个元素添加到x'的二进制掩码。这些掩码也被记住,因为它们经常使用,因此它们仅被计算一次。然后使用成语
bin(n).count('1')
来计数位数,该成语should be最快的实现方式(我将其与Kernighan的经典作法进行比较)。那么,我还能采取什么措施来提高程序的性能呢?以下是一些测试案例:
print answer([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]), 1
print answer([
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]
]), 14
print answer([
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
]), 15
print answer([
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]), 14
print answer([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
]), 15
编辑:我通过了这一轮。此实现可以正确解决5个测试用例中的4个,然后我强行解决了第五个。我仍然对进一步的优化或其他算法感兴趣!
编辑2:This answer,尤其是this paper提供了一个证明这一特殊问题是NP-难的问题(第3节),这表明我们不应该寻求多项式算法。所以问题就变成了:“我们能得到的最佳指数是多少?”。
最佳答案
我尝试了关于线性代数的所有事情,由于它是GF2,所以我认为我找不到多项式解。由于最大数量为15,因此我进一步将其优化为大约2 ^ 15。
对于偶数
因此,对于n
而言,还有比标准线性代数更快的方法。例如,如果您有这样的事情,0000010000000000
一个解决方案应该是(将点的行和列恰好翻转n次)0100111101000100
如果考虑一下,如果您有想要翻转的点,则可以翻转行和列的每个点一次。 (如果这很有意义),那么很容易找到一个特定的解决方案。
如果我有这样的事情0100001000100000
一种解决方案可能是1131122112210120
并且由于两次翻转没有区别,因此解决方案可以简化为1111100110010100
然后是奇数
如果n
是奇数,我只能搜索。但是,我们可以扩展n-> n + 1,以使问题的解决方案不应包含最后一行和最后一列的翻转点。
如果您有3x3之类的东西:010001001
您可以随时尝试将解决方案扩展到类似以下内容:010x001x001xxxxx
首先,您将确定3乘3的所有点,11111001 + ?10010100
在哪应该解决000x000x000xxxxx
如您所见,无论如何翻转,除非xxx是相同的位,否则您将无法满足。然后,您可以尝试翻转底部的所有组合,然后通过确定翻转是否导致行的最小数量为1,来确定是否进行右侧翻转。
我真的很无能为力,希望事情会很清楚。
关于python - 如何进一步优化“Lights Out”变体的求解器?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/27436275/