我正在尝试使用 keras 微调 resnet 50。当我卡住 resnet50 中的所有层时,一切正常。但是,我想卡住resnet50的某些层,而不是全部。但是当我这样做时,我会遇到一些错误。这是我的代码:

base_model = ResNet50(include_top=False, weights="imagenet", input_shape=(input_size, input_size, input_channels))
model = Sequential()
model.add(base_model)
model.add(Flatten())
model.add(Dense(80, activation="softmax"))

#this is where the error happens. The commented code works fine
"""
for layer in base_model.layers:
    layer.trainable = False
"""
for layer in base_model.layers[:-26]:
    layer.trainable = False
model.summary()
optimizer = Adam(lr=1e-4)
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])

callbacks = [
    EarlyStopping(monitor='val_loss', patience=4, verbose=1, min_delta=1e-4),
    ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, cooldown=2, verbose=1),
    ModelCheckpoint(filepath='weights/renet50_best_weight.fold_' + str(fold_count) + '.hdf5', save_best_only=True,
                    save_weights_only=True)
    ]

model.load_weights(filepath="weights/renet50_best_weight.fold_1.hdf5")
model.fit_generator(generator=train_generator(), steps_per_epoch=len(df_train) // batch_size,  epochs=epochs, verbose=1,
                  callbacks=callbacks, validation_data=valid_generator(), validation_steps = len(df_valid) // batch_size)

错误如下:
Traceback (most recent call last):
File "/home/jamesben/ai_challenger/src/train.py", line 184, in <module> model.load_weights(filepath="weights/renet50_best_weight.fold_" + str(fold_count) + '.hdf5')
File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 719, in load_weights topology.load_weights_from_hdf5_group(f, layers)
File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 3095, in load_weights_from_hdf5_group K.batch_set_value(weight_value_tuples)
File "/usr/local/lib/python3.5/dist-packages/keras/backend/tensorflow_backend.py", line 2193, in batch_set_value get_session().run(assign_ops, feed_dict=feed_dict)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 767, in run run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 944, in _run % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (128,) for Tensor 'Placeholder_72:0', which has shape '(3, 3, 128, 128)'

谁能给我一些关于我应该用 resnet50 卡住多少层的帮助?

最佳答案

在嵌套模型中使用 load_weights()save_weights() 时,如果 trainable 设置不同,很容易出错。
要解决该错误,请确保在调用 model.load_weights() 之前卡住相同的层。也就是说,如果权重文件在所有层都被卡住的情况下保存,程序将是:

  • 重新创建模型
  • 卡住 base_model 中的所有层
  • 加载权重
  • 解冻要训练的那些层(在本例中为 base_model.layers[-26:] )

  • 例如,
    base_model = ResNet50(include_top=False, input_shape=(224, 224, 3))
    model = Sequential()
    model.add(base_model)
    model.add(Flatten())
    model.add(Dense(80, activation="softmax"))
    
    for layer in base_model.layers:
        layer.trainable = False
    model.load_weights('all_layers_freezed.h5')
    
    for layer in base_model.layers[-26:]:
        layer.trainable = True
    

    根本原因:
    当您调用 model.load_weights() 时,(粗略地)通过以下步骤加载每个层的权重(在 topology.py 的函数 load_weights_from_hdf5_group() 中):
  • 调用 layer.weights 获取权重张量
  • 将每个权重张量与其对应的 hdf5 文件中的权重值进行匹配
  • 调用 K.batch_set_value() 将权重值分配给权重张量

  • 如果您的模型是嵌套模型,则由于步骤 1,您必须小心 trainable
    我会用一个例子来解释它。对于与上述相同的模型,model.summary() 给出:
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #
    =================================================================
    resnet50 (Model)             (None, 1, 1, 2048)        23587712
    _________________________________________________________________
    flatten_10 (Flatten)         (None, 2048)              0
    _________________________________________________________________
    dense_5 (Dense)              (None, 80)                163920
    =================================================================
    Total params: 23,751,632
    Trainable params: 11,202,640
    Non-trainable params: 12,548,992
    _________________________________________________________________
    
    内部的 ResNet50 模型在权重加载过程中被视为一层 model。在加载层 resnet50 时,在 Step 1 中,调用 layer.weights 相当于调用 base_model.weightsResNet50 模型中所有层的权重张量列表将被收集并返回。
    现在的问题是,在构建权重张量列表时, 可训练权重将出现在不可训练权重 之前。在 Layer 类的定义中:
    @property
    def weights(self):
        return self.trainable_weights + self.non_trainable_weights
    
    如果 base_model 中的所有层都被卡住,则权重张量将按以下顺序排列:
    for layer in base_model.layers:
        layer.trainable = False
    print(base_model.weights)
    
    [<tf.Variable 'conv1/kernel:0' shape=(7, 7, 3, 64) dtype=float32_ref>,
     <tf.Variable 'conv1/bias:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'bn_conv1/gamma:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'bn_conv1/beta:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'bn_conv1/moving_mean:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'bn_conv1/moving_variance:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'res2a_branch2a/kernel:0' shape=(1, 1, 64, 64) dtype=float32_ref>,
     <tf.Variable 'res2a_branch2a/bias:0' shape=(64,) dtype=float32_ref>,
     ...
     <tf.Variable 'res5c_branch2c/kernel:0' shape=(1, 1, 512, 2048) dtype=float32_ref>,
     <tf.Variable 'res5c_branch2c/bias:0' shape=(2048,) dtype=float32_ref>,
     <tf.Variable 'bn5c_branch2c/gamma:0' shape=(2048,) dtype=float32_ref>,
     <tf.Variable 'bn5c_branch2c/beta:0' shape=(2048,) dtype=float32_ref>,
     <tf.Variable 'bn5c_branch2c/moving_mean:0' shape=(2048,) dtype=float32_ref>,
     <tf.Variable 'bn5c_branch2c/moving_variance:0' shape=(2048,) dtype=float32_ref>]
    
    但是,如果某些层是可训练的,则可训练层的权重张量将位于卡住层的权重张量之前:
    for layer in base_model.layers[-5:]:
        layer.trainable = True
    print(base_model.weights)
    
    [<tf.Variable 'res5c_branch2c/kernel:0' shape=(1, 1, 512, 2048) dtype=float32_ref>,
     <tf.Variable 'res5c_branch2c/bias:0' shape=(2048,) dtype=float32_ref>,
     <tf.Variable 'bn5c_branch2c/gamma:0' shape=(2048,) dtype=float32_ref>,
     <tf.Variable 'bn5c_branch2c/beta:0' shape=(2048,) dtype=float32_ref>,
     <tf.Variable 'conv1/kernel:0' shape=(7, 7, 3, 64) dtype=float32_ref>,
     <tf.Variable 'conv1/bias:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'bn_conv1/gamma:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'bn_conv1/beta:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'bn_conv1/moving_mean:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'bn_conv1/moving_variance:0' shape=(64,) dtype=float32_ref>,
     <tf.Variable 'res2a_branch2a/kernel:0' shape=(1, 1, 64, 64) dtype=float32_ref>,
     <tf.Variable 'res2a_branch2a/bias:0' shape=(64,) dtype=float32_ref>,
     ...
     <tf.Variable 'bn5c_branch2b/moving_mean:0' shape=(512,) dtype=float32_ref>,
     <tf.Variable 'bn5c_branch2b/moving_variance:0' shape=(512,) dtype=float32_ref>,
     <tf.Variable 'bn5c_branch2c/moving_mean:0' shape=(2048,) dtype=float32_ref>,
     <tf.Variable 'bn5c_branch2c/moving_variance:0' shape=(2048,) dtype=float32_ref>]
    
    顺序的变化就是为什么你会得到关于张量形状的错误。 hdf5 文件中保存的权重值与上述步骤 2 中错误的权重张量匹配。当您卡住所有层时一切正常的原因是因为您的模型检查点也与所有层卡住一起保存,因此顺序是正确的。

    可能更好的解决方案:
    您可以通过使用函数式 API 来避免嵌套模型。例如,以下代码应该可以正常工作:
    base_model = ResNet50(include_top=False, weights="imagenet", input_shape=(input_size, input_size, input_channels))
    x = Flatten()(base_model.output)
    x = Dense(80, activation="softmax")(x)
    model = Model(base_model.input, x)
    
    for layer in base_model.layers:
        layer.trainable = False
    model.save_weights("all_nontrainable.h5")
    
    base_model = ResNet50(include_top=False, weights="imagenet", input_shape=(input_size, input_size, input_channels))
    x = Flatten()(base_model.output)
    x = Dense(80, activation="softmax")(x)
    model = Model(base_model.input, x)
    
    for layer in base_model.layers[:-26]:
        layer.trainable = False
    model.load_weights("all_nontrainable.h5")
    

    关于neural-network - 微调resnet50时如何卡住某些层,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/46610732/

    10-12 19:35