题目大意:
有向无环图可重叠最小路径覆盖
考虑\(u-v-w\)和\(x-v-y\)可以拆分成\(u-v-w\)和\(x-y\),我们把所有可以到达的点之间连边,然后跑不可重叠最小路径覆盖
传递闭包用floyd
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
namespace red{
#define eps (1e-8)
inline int read()
{
int x=0;char ch,f=1;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-') f=0,ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
const int N=510;
int n,m,ret,tim;
int f[N<<1],vis[N<<1];
int jx[N][N];
int head[N<<1],cnt;
struct point
{
int nxt,to;
point(){}
point(const int &nxt,const int &to):nxt(nxt),to(to){}
}a[N*N];
inline void link(int x,int y)
{
a[++cnt]=(point){head[x],y};head[x]=cnt;
a[++cnt]=(point){head[y],x};head[y]=cnt;
}
inline bool find(int x)
{
for(int i=head[x];i;i=a[i].nxt)
{
int t=a[i].to;
if(vis[t]==tim) continue;
vis[t]=tim;
if(!f[t]||find(f[t]))
{
f[t]=x;
return 1;
}
}
return 0;
}
inline void main()
{
while("haku")
{
n=read(),m=read();
if(!n&&!m) break;
memset(head,0,sizeof(head));
memset(jx,0,sizeof(jx));
memset(f,0,sizeof(f));
ret=cnt=0;
for(int x,y,i=1;i<=m;++i)
{
x=read(),y=read();
jx[x][y]=1;
}
for(int k=1;k<=n;++k)
{
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
jx[i][j]|=jx[i][k]&jx[k][j];
}
}
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
if(jx[i][j]) link(i,j+n);
}
}
for(int i=1;i<=n;++i)
{
++tim;
ret+=find(i);
}
printf("%d\n",n-ret);
}
}
}
signed main()
{
red::main();
return 0;
}