我在使用Tfidf进行K折交叉验证时遇到问题。它给了我这个错误
ValueError: setting an array element with a sequence.
我看过其他有相同问题的问题,但他们使用的是train_test_split()与K折有点不同
for train_fold, valid_fold in kf.split(reviews_p1):
vec = TfidfVectorizer(ngram_range=(1,1))
reviews_p1 = vec.fit_transform(reviews_p1)
train_x = [reviews_p1[i] for i in train_fold] # Extract train data with train indices
train_y = [labels_p1[i] for i in train_fold] # Extract train data with train indices
valid_x = [reviews_p1[i] for i in valid_fold] # Extract valid data with cv indices
valid_y = [labels_p1[i] for i in valid_fold] # Extract valid data with cv indices
svc = LinearSVC()
model = svc.fit(X = train_x, y = train_y) # We fit the model with the fold train data
y_pred = model.predict(valid_x)
实际上,我发现了问题所在,但找不到解决方法,基本上,当我们使用cv / train索引提取训练数据时,我们会得到一个稀疏矩阵列表
[<1x21185 sparse matrix of type '<class 'numpy.float64'>'
with 54 stored elements in Compressed Sparse Row format>,
<1x21185 sparse matrix of type '<class 'numpy.float64'>'
with 47 stored elements in Compressed Sparse Row format>,
<1x21185 sparse matrix of type '<class 'numpy.float64'>'
with 18 stored elements in Compressed Sparse Row format>, ....]
拆分后,我尝试在数据上应用Tfidf,但由于功能数量不同,因此无法正常工作。
那么有没有办法在不创建稀疏矩阵列表的情况下将数据拆分为K折呢?
最佳答案
在回答类似问题Do I use the same Tfidf vocabulary in k-fold cross_validation时,他们建议
for train_index, test_index in kf.split(data_x, data_y):
x_train, x_test = data_x[train_index], data_x[test_index]
y_train, y_test = data_y[train_index], data_y[test_index]
tfidf = TfidfVectorizer()
x_train = tfidf.fit_transform(x_train)
x_test = tfidf.transform(x_test)
clf = SVC()
clf.fit(x_train, y_train)
y_pred = clf.predict(x_test)
score = accuracy_score(y_test, y_pred)
print(score)
关于machine-learning - 如何在TfidfVectorizer中应用Kfold?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/59284471/