我将尝试使用Unity Kalman过滤器。但是我遇到了一个问题。

应用卡尔曼滤波器后,位置将被很好地应用。但是,旋转效果不好。当对象的旋转(x或y或z)从正变为负或从负变为正时,对象将被翻转(也许是360º?/我附加了参考视频。)

Reference GIF

我能弄清楚如何解决这个问题吗?还是Unity中有完整的卡尔曼滤波器源?

由于我使用Unity,所以旋转使用四元数。但是我的卡尔曼滤波器似乎使用了欧拉。我将其更改为矢量4,但无法对其进行修复。

** 1.控制器代码

using UnityEngine;
using Kalman;

public class Test : MonoBehaviour {

[SerializeField]
Camera cam;

[SerializeField]
Transform nonFilter; //Input Object (not Filter)

[SerializeField]
Transform filterdCube; //Object to be filtered

IKalmanWrapper kalman;
IKalmanWrapper kalman2;
Vector3 nonFilterRot;
Vector3 nonFilterPos;

void Awake ()
{
    kalman = new MatrixKalmanWrapper ();
    kalman2 = new MatrixKalmanWrapper();
    //kalman = new SimpleKalmanWrapper ();
}

void Start ()
{
    cam = Camera.main;
}

// Update is called once per frame
void Update ()
{
    nonFilterRot = nonFilter.transform.rotation.eulerAngles; //make euler
    nonFilterPos = nonFilter.transform.position;

    filterdCube.transform.position = kalman.Update(nonFilterPos);
    filterdCube.transform.rotation = Quaternion.Euler(kalman2.Update(nonFilterRot)); //Go to Kalman Filter
}
}


** 2.更新

using UnityEngine;
using System.Collections;


namespace Kalman {
    public interface IKalmanWrapper : System.IDisposable
    {
        Vector3 Update (Vector3 current);
    }
}


**卡尔曼过滤器代码

namespace Kalman
{
    public sealed class KalmanFilter
{
    //System matrices
    public Matrix X0 { get; private set; }  // predicted state
    public Matrix P0 { get; private set; }  // predicted covariance

    public Matrix F { get; private set; }   // factor of real value to previous real value
    public Matrix B { get; private set; }   // the control-input model which is applied to the control vector uk;
    public Matrix U { get; private set; }   // the control-input model which is applied to the control vector uk;
    public Matrix Q { get; private set; }   // measurement noise
    public Matrix H { get; private set; }   // factor of measured value to real value
    public Matrix R { get; private set; }   // environment noise

    public Matrix State { get; private set; }
    public Matrix Covariance { get; private set; }

    public KalmanFilter(Matrix f, Matrix b, Matrix u, Matrix q, Matrix h, Matrix r)
    {
        F = f;
        B = b;
        U = u;
        Q = q;
        H = h;
        R = r;
    }

    public void SetState(Matrix state, Matrix covariance)
    {
        // Set initial state
        State = state;
        Covariance = covariance;
    }

    public void Correct (Matrix z)
    {
        // Predict
        //X0 = F * State +(B * U);
        X0 = F * State;
        P0 = F * Covariance * F.Transpose () + Q;

        // Correct
        //var k = P0 * H.Transpose() * (H * P0 * H.Transpose() + R).Inverse(); // kalman gain
        var k = P0 * H.Transpose () * (H * P0 * H.Transpose () + R).Invert (); // kalman gain
        State = X0 + (k * (z - (H * X0)));
        //Covariance = (Matrix.Identity (P0.RowCount) - k * H) * P0;
        Covariance = (Matrix.IdentityMatrix (P0.rows) - k * H) * P0;
    }

}


}

** MatrixKalmanWrapper

using UnityEngine;

namespace Kalman {

/// <summary>
/// Matrix kalman wrapper.
/// </summary>
public class MatrixKalmanWrapper : IKalmanWrapper
{
    private KalmanFilter kX;
    private KalmanFilter kY;
    private KalmanFilter kZ;

    public MatrixKalmanWrapper ()
    {
        /*
        X0 : predicted state
        P0 : predicted covariance

        F : factor of real value to previous real value
        B : the control-input model which is applied to the control vector uk;
        U : the control-input model which is applied to the control vector uk;
        Q : measurement noise
        H : factor of measured value to real value
        R : environment noise
        */
        var f = new Matrix (new[,] {{1.0, 1}, {0, 1.0}});
        var b = new Matrix (new[,] {{0.0}, {0}});
        var u = new Matrix (new[,] {{0.0}, {0}});
        var r = Matrix.CreateVector (10);
        //var q = new Matrix(new[,] { { 0.01, 0.4 }, { 0.1, 0.02 } });
        //var h = new Matrix(new[,] { { 1.0, 0 } });
        var q = new Matrix (new[,] {{0.001, 0.001 }, { 0.001, 0.001 } });
        var h = new Matrix (new[,] {{ 1.0  , 0}});

        kX = makeKalmanFilter (f, b, u, q, h, r);
        kY = makeKalmanFilter (f, b, u, q, h, r);
        kZ = makeKalmanFilter (f, b, u, q, h, r);
    }

    public Vector3 Update(Vector3 current)
    {
        kX.Correct(new Matrix(new double[,] { { current.x } }));
        kY.Correct(new Matrix(new double[,] { { current.y } }));
        kZ.Correct(new Matrix(new double[,] { { current.z } }));

        // rashod
        // kX.State [1,0];
        // kY.State [1,0];
        // kZ.State [1,0];

        Vector3 filtered = new Vector3(
            (float)kX.State[0, 0],
            (float)kY.State[0, 0],
            (float)kZ.State[0, 0]
        );
        return filtered;
    }
    public void Dispose ()
    {

    }

    #region Privates
    KalmanFilter makeKalmanFilter (Matrix f, Matrix b, Matrix u, Matrix q, Matrix h, Matrix r)
    {
        var filter = new KalmanFilter (
            f.Duplicate (),
            b.Duplicate (),
            u.Duplicate (),
            q.Duplicate (),
            h.Duplicate (),
            r.Duplicate ()
        );
        // set initial value
        filter.SetState (
            Matrix.CreateVector (500, 0),
            new Matrix (new [,] {{10.0, 0}, {0, 5.0}})
        );
        return filter;
    }
    #endregion



}


}

最佳答案

这是由于欧拉角在[0,360]上处于模空间(可能是错误的术语)。

我对卡尔曼滤波器一无所知,但这是一个可能的部分解决方案。也许它将引导您找到答案

使用2个过滤器估算局部transform.uptransform.forward方向,然后使用Quaternion.LookRotation从估算值中获得旋转值

void Awake ()
{
    kalman = new MatrixKalmanWrapper ();
    kalman2 = new MatrixKalmanWrapper();
    kalman3 = new MatrixKalmanWrapper();
}

void Start ()
{
    cam = Camera.main;
}

// Update is called once per frame
void Update ()
{
    nonFilterForward = nonFilter.transform.forward;
    nonFilterUp = nonFilter.transform.up;
    nonFilterPos = nonFilter.transform.position;

    filterdCube.transform.position = kalman.Update(nonFilterPos);

    Vector3 filteredForward = kalman2.Update(nonFilterForward );
    Vector3 filteredUp = kalman3.Update(nonFilterUp);
    filterdCube.transform.rotation = Quaternion.LookRotation(filteredForward, filteredUp);
}

10-06 11:36