这是kmeans算法的实现,我将其从kmeans scikit文档和讨论kmeans的博客文章中汇总到一起:
#http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
#http://fromdatawithlove.thegovans.us/2013/05/clustering-using-scikit-learn.html
from sklearn.cluster import KMeans
import numpy as np
from matplotlib import pyplot
X = np.array([[10, 2 , 9], [1, 4 , 3], [1, 0 , 3],
[4, 2 , 1], [4, 4 , 7], [4, 0 , 5], [4, 6 , 3],[4, 1 , 7],[5, 2 , 3],[6, 3 , 3],[7, 4 , 13]])
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
k = 3
kmeans.fit(X)
labels = kmeans.labels_
centroids = kmeans.cluster_centers_
for i in range(k):
# select only data observations with cluster label == i
ds = X[np.where(labels==i)]
# plot the data observations
pyplot.plot(ds[:,0],ds[:,1],'o')
# plot the centroids
lines = pyplot.plot(centroids[i,0],centroids[i,1],'kx')
# make the centroid x's bigger
pyplot.setp(lines,ms=15.0)
pyplot.setp(lines,mew=2.0)
pyplot.show()
print(kmeans.cluster_centers_.squeeze())
如何打印/访问k个群集中每个群集的数据点。
if k = 3 :
cluster 1 : [10, 2 , 9], [1, 4 , 3], [1, 0 , 3]
cluster 2 : [4, 0 , 5], [4, 6 , 3],[4, 1 , 7],[5, 2 , 3],[6, 3 , 3],[7, 4 , 13]
cluster 3 : [4, 2 , 1], [4, 4 , 7]
读取http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html的
kmeans
对象上没有属性或方法吗?更新:
kmeans.labels_
返回array([1, 0, 2, 0, 2, 2, 0, 2, 0, 0, 1], dtype=int32)
但是,这如何显示三个群集中每个群集的数据点?
最佳答案
如果使用适合的_labels
对象的KMeans
属性,则将为每个训练向量获得一个数组的簇分配。标签数组的顺序与您的训练数据相同,因此您可以压缩它们或对每个唯一标签执行numpy.where()。
关于python - k表示集群:如何访问集群数据点,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/41703334/