题目描述:
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...
)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1: 输入: n = 12 输出: 3 解释: 12 = 4 + 4 + 4. 示例 2: 输入: n = 13 输出: 2 解释: 13 = 4 + 9.
思路分析:思路:
动态规划
首先初始化长度为n+1的数组dp,每个位置都为0
如果n为0,则结果为0
对数组进行遍历,下标为i,每次都将当前数字先更新为最大的结果,即dp[i]=i,比如i=4,最坏结果为4=1+1+1+1即为4个数字
动态转移方程为:dp[i] = MIN(dp[i], dp[i - j * j] + 1),i表示当前数字,j*j表示平方数
时间复杂度:O(n*sqrt(n)),sqrt为平方根
class Solution { public int numSquares(int n) { int[] dp = new int[n + 1]; // 默认初始化值都为0 for (int i = 1; i <= n; i++) { dp[i] = i; // 最坏的情况就是每次+1 for (int j = 1; i - j * j >= 0; j++) { dp[i] = Math.min(dp[i], dp[i - j * j] + 1); // 动态转移方程 } } return dp[n]; } }
代码实现: