题目

实现 int sqrt(int x) 函数。

计算并返回 x 的平方根,其中 是非负整数。

由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。

示例 1:

输入: 4
输出: 2

示例 2:

输入: 8
输出: 2
说明: 8 的平方根是 2.82842...,
     由于返回类型是整数,小数部分将被舍去。

思路

二分查找法应用于搜索平方根的思想很简单,其实就是“猜”,但是是有策略的“猜”,用“排除法”在有限的区间里,一次排除一半的区间元素,最后只剩下一个数,这个数就是题目要求的向下取整的平方根整数。

牛顿法最初提出的时候,是用于求解方程的根,它的基本思想是“以直代曲”,在迭代中搜索得到方程的近似解

使用二分法搜索平方根的思想很简单,就类似于小时候我们看的电视节目中的“猜价格”游戏,高了就往低了猜,低了就往高了猜,范围越来越小。因此,使用二分法猜算术平方根就很自然。

一个数的平方根肯定不会超过它自己,不过直觉还告诉我们,一个数的平方根最多不会超过它的一半,例如 88 的平方根,8的一半是4,4^2 = 16 > 8,如果这个数越大越是如此,因此我们要计算一下,这个边界是多少,不等式如下

(a/2)^2 >= a 

意即:如果一个数的一半的平方大于它自己,那么这个数的取值范围

 

代码

 public int mySqrt(int x) {
        if (x == 0) {
            return 0;
        }
        long left = 1;
        long right = x / 2;
        while (left < right) {
            // 注意:这里一定取右中位数,如果取左中位数,代码会进入死循环
            // long mid = left + (right - left + 1) / 2;
            long mid = (left + right + 1) >>> 1;
            long square = mid * mid;
            if (square > x) {
                right = mid - 1;
            } else {
                left = mid;
            }
        }
        // 因为一定存在,因此无需后处理
        return (int) left;
    }
12-21 19:16