情况
我正在尝试将图像数据存储在tfrecords中。
细节
图像具有形状(256,256,4)和标签(17)。看来tfrecords已正确保存(height和width属性可以成功解码)
问题
当我测试使用会话从tfrecords中提取图像和标签时,抛出错误。看来标签形状有些不对劲
错误信息
INFO:tensorflow:向协调员报告错误:'tensorflow.python.framework.errors_impl.InvalidArgumentError'>,输入> reshape是具有34个值的张量,但请求的形状为17
[[节点:Reshape_4 = Reshape [T = DT_INT32,Tshape = DT_INT32,> _ device =“ / job:localhost /副本:0 / task:0 / cpu:0”](DecodeRaw_5,> Reshape_4 / shape)]]
码
注意:我对第一部分非常有信心,因为它是直接从tensorflow documation示例中复制的
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
"""Converts a dataset to tfrecords."""
# Open files
train_filename = os.path.join('./data/train.tfrecords')
validation_filename = os.path.join('./data/validation.tfrecords')
# Create writers
train_writer = tf.python_io.TFRecordWriter(train_filename)
# validation_writer = tf.python_io.TFRecordWriter(validation_filename)
for i in range(200):
label = y[i]
img = io.imread(TRAINING_IMAGES_DIR + '/train_' + str(i) + '.tif')
example = tf.train.Example(features=tf.train.Features(feature={
'width': _int64_feature([img.shape[0]]),
'height': _int64_feature([img.shape[1]]),
'channels': _int64_feature([img.shape[2]]),
'label': _bytes_feature(label.tostring()),
'image': _bytes_feature(img.tostring())
}))
# if i in validation_indices:
# validation_writer.write(example.SerializeToString())
# else:
train_writer.write(example.SerializeToString())
train_writer.close()
# validation_writer.close()
错误部分。请注意,特别奇怪的是,如果我将重塑函数更改为[34],仍然会遇到相同的错误。
data_path = './data/train.tfrecords'
with tf.Session() as sess:
feature = {'image': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.string)}
# Create a list of filenames and pass it to a queue
filename_queue = tf.train.string_input_producer([data_path], num_epochs=1)
# Define a reader and read the next record
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
# Decode the record read by the reader
features = tf.parse_single_example(serialized_example, features=feature)
# Convert the image data from string back to the numbers
image = tf.decode_raw(features['image'], tf.float32)
# Cast label data into int32
label = tf.decode_raw(features['label'], tf.int8)
# Reshape image data into the original shape
image = tf.reshape(image, [256, 256, 4])
label = tf.reshape(label, [17])
# Any preprocessing here ...
# Creates batches by randomly shuffling tensors
images, labels = tf.train.shuffle_batch([image, label], batch_size=1, capacity=20, num_threads=1, min_after_dequeue=10)
# Initialize all global and local variables
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
sess.run(init_op)
# Create a coordinator and run all QueueRunner objects
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
img, lbl = sess.run([images, labels])
img
# Stop the threads
coord.request_stop()
# Wait for threads to stop
coord.join(threads)
sess.close()
最佳答案
当标签为tf.int16
之前,将其保存在tfrecords中的字节中时,可能会出现此问题。因此,当您阅读时,作为tf.int8
的数字是您期望的两倍。因此,您可以通过以下方式确保标签正确写入:tfrecords转换代码中的label = tf.cast(y[i], tf.int8)
。
关于python - Tensorflow tfrecords不允许设置形状吗?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/45048081/