我在学习this guide的同时正在学习CUDA。
我还没有完成,但是我决定玩一些到目前为止所看到的。
我试图重写第一个使用256个线程的示例。我想这样做,以便每个线程在数组的连续切片上进行操作。
目标是将2个数组与1,048,576个项相加。
为了进行比较,这是原始代码,其中根据跨步访问每个数组项:
这是我的功能:
__global__
void add2(int n, float* x, float* y) {
int sliceSize = n / blockDim.x;
int lower = threadIdx.x * sliceSize;
int upper = lower + sliceSize;
for (int i = lower; i < upper; i++) {
y[i] = x[i] + y[i];
}
}
事实证明,最后一个摘要的执行速度比上一个摘要慢了近7倍(22ms对3ms)。我认为,通过在连续的片上访问它们,它将执行相同或更快的操作。
我正在使用
add<<<1, threads>>>(n, x, y)
和add<<<1, threads>>>(n, x, y)
(256个线程)调用该函数。sliceSize
的值始终为4096
。在这种情况下,应该发生的是:threadIdx.x = 0
从0到4095 threadIdx.x = 1
从4096变为8191 threadIdx.x = 255
从1044480变为1048576 我打开了NVidia Visual Profiler,然后了解到我的内存访问模式效率不高(全局内存加载/存储效率低)。第一个代码段中没有此警告。为什么会这样呢?
我以为第一个被删除的对象会在整个数组中跳转,从而造成错误的访问模式。实际上,这似乎很好。
我已经阅读了可视分析器随附的一些有关内存优化的文档,但是我不太明白为什么它这么慢。
最佳答案
您正在探索合并和未合并的内存访问之间的区别。或者我们可以简单地说“最有效”和“效率较低”的内存访问。
在GPU上,所有指令都在整个warp中执行。因此,当warp中的一个线程正在读取内存中的位置时,warp中的所有线程都正在从内存中读取。粗略地说,最佳模式是当经线中的所有线程都从相邻位置读取时。这导致以下情况:GPU内存 Controller 在检查特定时间段内warp中每个线程请求的内存地址后,可以将合并地址在一起,从而导致需要从内存请求的行数最少。高速缓存(或要从DRAM请求的最小段数)。
在幻灯片36(或37)here上以图形方式描绘了这种情况。
第一个代码段中表示了100%合并的大小写。从全局内存读取的示例如下:
y[i] = x[i] + y[i];
^
reading from the vector x in global memory
让我们考虑循环的第一遍,并考虑第一次扭曲的情况(即线程块中的前32个线程)。在这种情况下,
i
由threadIdx.x
给出。因此,线程0的索引为0,线程1的索引为1,依此类推。因此,每个线程都在读取全局内存中的相邻位置。假设我们错过了所有缓存,这将转化为DRAM读取请求,并且存储器 Controller 可以针对DRAM中的段(或等效地,针对缓存中的行)生成最少数量的请求(更准确地说:事务)。从“总线带宽利用率”为100%的角度来看,这是最佳的。在该读取周期上,请求的每个字节实际上都被扭曲中的线程使用。“不公开”访问通常可以指任何不符合以上描述的情况。转化为上述更细粒度的“总线带宽利用率”数字,根据具体情况和不同情况,非强制访问的程度可能有所不同,从最好的情况(略低于100%)到最坏的情况为12.5%(或3.125%)。 GPU。
在幻灯片44(或45)here中给出了根据此描述的最坏情况的不分时段访问模式示例。这不能完全描述您的最坏情况的代码段,但是对于足够大的
sliceSize
来说,它是等效的。代码行是相同的。考虑到相同的读取请求(对于x
,在循环的第一次迭代中,对于warp 0,为warp 0),唯一的区别在于i
在整个warp中取值:int sliceSize = n / blockDim.x;
int lower = threadIdx.x * sliceSize;
...
for (int i = lower; i < upper; i++) {
y[i] = x[i] + y[i];
因此,
i
从lower
开始,即threadIdx.x * sliceSize
。假设sliceSize
大于1。然后,第一个线程将读取位置0。第二个线程将读取位置sliceSize
。第三个线程将读取位置2*sliceSize
等。这些位置由sliceSize
距离分隔。即使sliceSize
只有2,该模式的效率仍然较低,因为内存 Controller 现在必须请求两倍的行数或段数才能满足遍历0的特定读取周期。如果sliceSize
足够大,则内存 Controller 必须请求a每个线程的唯一行或段,这是最坏的情况。作为最后的注释/总结,可以对“快速分析”做出有益的观察:
threadIdx.x
乘以除1以外的任何数量。threadIdx.x
乘以不等于1的某个数字,则无论其他考虑如何,这几乎都是普遍的指示,即所生成的访问模式将不是最佳的。 为了清楚起见,请重复此操作:
index = any_constant_across_the_warp + threadIdx.x;
通常将是最佳的访问模式。
index = any_constant_across_the_warp + C*threadIdx.x;
通常将不是最佳的访问模式。注意
any_constant_across_the_warp
可以由数量上的任意算术组成,例如:循环索引,blockIdx.?
,blockDim.?
,gridDim.?
和任何其他常量。必须考虑到2D或3D线程块模式,其中将考虑threadIdx.y
,但通常不难将这种理解扩展到2D情况。对于典型的线程块形状,为了进行快速分析,通常不希望在threadIdx.x
或threadIdx.y
上使用常数乘数。整个讨论适用于全局内存读/写。共享内存还具有用于最佳访问的规则,这些规则在某种程度上类似于上述说明,但在某些方面却大不相同。但是,通常的情况是,针对全局内存的完全最佳的100%合并模式也将是共享内存读/写的最佳模式。换句话说,扭曲中的相邻访问通常对于共享内存也是最佳的(但它不是共享内存的唯一可能的最佳模式)。
与here链接的演示文稿将对此主题进行更全面的处理,网络上的许多其他演示文稿和处理也将对此进行更全面的处理。