我有一个小部件表;每个小部件都有唯一的ID,颜色和类别。我想在circlepack中创建此表的ggraph图,该图涉及类别,层次结构类别>颜色>小部件ID:

r - 使用Circlepack在ggraph中进行构面时隐藏根节点-LMLPHP

问题是根节点。在此MWE中,根节点没有类别,因此它具有自己的功能。

r - 使用Circlepack在ggraph中进行构面时隐藏根节点-LMLPHP

library(igraph)
library(ggraph)

# Toy dataset.  Each widget has a unique ID, a fill color, a category, and a
# count.  Most widgets are blue.
widgets.df = data.frame(
  id = seq(1:200),
  fill.hex = sample(c("#0055BF", "#237841", "#81007B"), 200, replace = T,
                    prob = c(0.6, 0.2, 0.2)),
  category = c(rep("a", 100), rep("b", 100)),
  num.widgets = ceiling(rexp(200, 0.3)),
  stringsAsFactors = F
)

# Edges of the graph.
widget.edges = bind_rows(
  # One edge from each color/category to each related widget.
  widgets.df %>%
    mutate(from = paste(fill.hex, category, sep = ""),
           to = paste(id, fill.hex, category, sep = "")) %>%
    select(from, to) %>%
    distinct(),
  # One edge from each category to each related color.
  widgets.df %>%
    mutate(from = category,
           to = paste(fill.hex, category, sep = "")) %>%
    select(from, to) %>%
    distinct(),
  # One edge from the root node to each category.
  widgets.df %>%
    mutate(from = "root",
           to = category)
)

# Vertices of the graph.
widget.vertices = bind_rows(
  # One vertex for each widget.
  widgets.df %>%
    mutate(name = paste(id, fill.hex, category, sep = ""),
           fill.to.plot = fill.hex,
           color.to.plot = "#000000") %>%
    select(name, category, fill.to.plot, color.to.plot, num.widgets) %>%
    distinct(),
  # One vertex for each color/category.
  widgets.df %>%
    mutate(name = paste(fill.hex, category, sep = ""),
           fill.to.plot = "#FFFFFF",
           color.to.plot = "#000000",
           num.widgets = 1) %>%
    select(name, category, fill.to.plot, color.to.plot, num.widgets) %>%
    distinct(),
  # One vertex for each category.
  widgets.df %>%
    mutate(name = category,
           fill.to.plot = "#FFFFFF",
           color.to.plot = "#000000",
           num.widgets = 1) %>%
    select(name, category, fill.to.plot, color.to.plot, num.widgets) %>%
    distinct(),
  # One root vertex.
  data.frame(name = "root",
             category = "",
             fill.to.plot = "#FFFFFF",
             color.to.plot = "#BBBBBB",
             num.widgets = 1,
             stringsAsFactors = F)
)

# Make the graph.
widget.igraph = graph_from_data_frame(widget.edges, vertices = widget.vertices)
widget.ggraph = ggraph(widget.igraph,
                       layout = "circlepack", weight = "num.widgets") +
  geom_node_circle(aes(fill = fill.to.plot, color = color.to.plot)) +
  scale_fill_manual(values = sort(unique(widget.vertices$fill.to.plot))) +
  scale_color_manual(values = sort(unique(widget.vertices$color.to.plot))) +
  theme_void() +
  guides(fill = F, color = F, size = F) +
  theme(aspect.ratio = 1) +
  facet_nodes(~ category, scales = "free")
widget.ggraph


如果我完全省略了根节点,则ggraph会发出警告,指出图形具有多个组件,并且仅绘制第一类。

如果我将根节点分配给第一个类别,则该第一个类别的图将缩小(因为还绘制了整个根节点的图形,而scales="free"根据需要显示了所有其他类别)。

r - 使用Circlepack在ggraph中进行构面时隐藏根节点-LMLPHP

我还尝试将filter = !is.na(category)添加到aesgeom_node_circle中并将drop = T添加到facet_nodes,但这似乎没有任何效果。

作为最后的选择,我可以保留根节点的构面,但将其完全空白(将类别名称设置为空字符串,将圆圈颜色更改为白色)。如果根节点构面始终是最后一个构面,那么不太可能有多余的东西存在。但我很想找到一个更好的解决方案。

r - 使用Circlepack在ggraph中进行构面时隐藏根节点-LMLPHP

我愿意使用除ggraph以外的其他内容,但是我有以下技术限制:


我需要用小部件的实际颜色填充每个小部件的圆圈。我相信这排除了circlepackeR
我在每个图中需要两个级别(颜色和小部件ID);我相信这会排除packcircles + ggiraph,如here所述。
这些图是Shiny应用程序的一部分,其中我使用this solution添加工具提示(每个小部件的ID;这必须是工具提示而不是标签,因为在实际数据集中,圆圈很小,ID为很长)。我认为这与为每个类别制作单独的图形并用grid.arrange绘制它们不兼容。我从未使用过d3,所以我不知道是否可以修改this approach以适应构面和工具提示。


编辑:另一个包含光泽部分的MWE:

library(dplyr)
library(shiny)
library(igraph)
library(ggraph)

# Toy dataset.  Each widget has a unique ID, a fill color, a category, and a
# count.  Most widgets are blue.
widgets.df = data.frame(
  id = seq(1:200),
  fill.hex = sample(c("#0055BF", "#237841", "#81007B"), 200, replace = T,
                    prob = c(0.6, 0.2, 0.2)),
  category = c(rep("a", 100), rep("b", 100)),
  num.widgets = ceiling(rexp(200, 0.3)),
  stringsAsFactors = F
)

# Edges of the graph.
widget.edges = bind_rows(
  # One edge from each color/category to each related widget.
  widgets.df %>%
    mutate(from = paste(fill.hex, category, sep = ""),
           to = paste(id, fill.hex, category, sep = "")) %>%
    select(from, to) %>%
    distinct(),
  # One edge from each category to each related color.
  widgets.df %>%
    mutate(from = category,
           to = paste(fill.hex, category, sep = "")) %>%
    select(from, to) %>%
    distinct(),
  # One edge from the root node to each category.
  widgets.df %>%
    mutate(from = "root",
           to = category)
)

# Vertices of the graph.
widget.vertices = bind_rows(
  # One vertex for each widget.
  widgets.df %>%
    mutate(name = paste(id, fill.hex, category, sep = ""),
           fill.to.plot = fill.hex,
           color.to.plot = "#000000") %>%
    select(name, category, fill.to.plot, color.to.plot, num.widgets) %>%
    distinct(),
  # One vertex for each color/category.
  widgets.df %>%
    mutate(name = paste(fill.hex, category, sep = ""),
           fill.to.plot = "#FFFFFF",
           color.to.plot = "#000000",
           num.widgets = 1) %>%
    select(name, category, fill.to.plot, color.to.plot, num.widgets) %>%
    distinct(),
  # One vertex for each category.
  widgets.df %>%
    mutate(name = category,
           fill.to.plot = "#FFFFFF",
           color.to.plot = "#000000",
           num.widgets = 1) %>%
    select(name, category, fill.to.plot, color.to.plot, num.widgets) %>%
    distinct(),
  # One root vertex.
  data.frame(name = "root",
             fill.to.plot = "#FFFFFF",
             color.to.plot = "#BBBBBB",
             num.widgets = 1,
             stringsAsFactors = F)
)

# UI logic.
ui <- fluidPage(

   # Application title
   titlePanel("Widget Data"),

   # Make sure the cursor has the default shape, even when using tooltips
   tags$head(tags$style(HTML("#widgetPlot { cursor: default; }"))),

   # Main panel for plot.
   mainPanel(
     # Circle-packing plot.
     div(
       style = "position:relative",
       plotOutput(
         "widgetPlot",
         width = "700px",
         height = "400px",
         hover = hoverOpts("widget_plot_hover", delay = 20, delayType = "debounce")
       ),
       uiOutput("widgetHover")
     )
   )

)

# Server logic.
server <- function(input, output) {

  # Create the graph.
  widget.ggraph = reactive({
    widget.igraph = graph_from_data_frame(widget.edges, vertices = widget.vertices)
    widget.ggraph = ggraph(widget.igraph,
                           layout = "circlepack", weight = "num.widgets") +
      geom_node_circle(aes(fill = fill.to.plot, color = color.to.plot)) +
      scale_fill_manual(values = sort(unique(widget.vertices$fill.to.plot))) +
      scale_color_manual(values = sort(unique(widget.vertices$color.to.plot))) +
      theme_void() +
      guides(fill = F, color = F, size = F) +
      theme(aspect.ratio = 1) +
      facet_nodes(~ category, scales = "free")
    widget.ggraph
  })

  # Render the graph.
  output$widgetPlot = renderPlot({
    widget.ggraph()
  })

  # Tooltip for the widget graph.
  # https://gitlab.com/snippets/16220
  output$widgetHover = renderUI({
    # Get the hover options.
    hover = input$widget_plot_hover
    # Find the data point that corresponds to the circle the mouse is hovering
    # over.
    if(!is.null(hover)) {
      point = widget.ggraph()$data %>%
        filter(leaf) %>%
        filter(r >= (((x - hover$x) ^ 2) + ((y - hover$y) ^ 2)) ^ .5)
    } else {
      return(NULL)
    }
    if(nrow(point) != 1) {
      return(NULL)
    }
    # Calculate how far from the left and top the center of the circle is, as a
    # percent of the total graph size.
    left_pct = (point$x - hover$domain$left) / (hover$domain$right - hover$domain$left)
    top_pct <- (hover$domain$top - point$y) / (hover$domain$top - hover$domain$bottom)
    # Convert the percents into pixels.
    left_px <- hover$range$left + left_pct * (hover$range$right - hover$range$left)
    top_px <- hover$range$top + top_pct * (hover$range$bottom - hover$range$top)
    # Set the style of the tooltip.
    style = paste0("position:absolute; z-index:100; background-color: rgba(245, 245, 245, 0.85); ",
                   "left:", left_px, "px; top:", top_px, "px;")
    # Create the actual tooltip as a wellPanel.
    wellPanel(
      style = style,
      p(HTML(paste("Widget id and color:", point$name)))
    )
  })

}

# Run the application
shinyApp(ui = ui, server = server)

最佳答案

这是一种解决方案,尽管可能不是最佳解决方案。让我们开始

gb <- ggplot_build(widget.ggraph)
gb$layout$layout <- gb$layout$layout[-1, ]
gb$layout$layout$COL <- gb$layout$layout$COL - 1


在这种情况下,我们有点去除了第一个方面。但是,我们仍然需要修复gb内部的数据。特别是,我们使用

library(scales)
gb$data[[1]] <- within(gb$data[[1]], {
  x[PANEL == 3] <- rescale(x[PANEL == 3], to = range(x[PANEL == 2]))
  x[PANEL == 2] <- rescale(x[PANEL == 2], to = range(x[PANEL == 1]))
  y[PANEL == 3] <- rescale(y[PANEL == 3], to = range(y[PANEL == 2]))
  y[PANEL == 2] <- rescale(y[PANEL == 2], to = range(y[PANEL == 1]))
})


分别将面板3和2中的xy缩放为面板2和1中的和。最后,

gb$data[[1]] <- gb$data[[1]][gb$data[[1]]$PANEL %in% 2:3, ]
gb$data[[1]]$PANEL <- factor(as.numeric(as.character(gb$data[[1]]$PANEL)) - 1)


删除第一个面板并相应地更改面板名称。这给

library(grid)
grid.draw(ggplot_gtable(gb))


r - 使用Circlepack在ggraph中进行构面时隐藏根节点-LMLPHP

关于r - 使用Circlepack在ggraph中进行构面时隐藏根节点,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/54165414/

10-12 17:09