我有一个大的数据框(超过3M行)。我正在尝试计算某个ActivityType在21天窗口中出现的次数。我已经从Rolling Sum by Another Variable in R建模了我的解决方案。但是,仅对于一个ActivityType,它就需要花费很长时间。我不认为3M +行会花费过多时间。以下是我尝试的方法:
dt <- read.table(text='
Name ActivityType ActivityDate
John Email 1/1/2014
John Email 1/3/2014
John Webinar 1/5/2014
John Webinar 1/20/2014
John Webinar 3/25/2014
John Email 4/1/2014
John Email 4/20/2014
Tom Email 1/1/2014
Tom Webinar 1/5/2014
Tom Webinar 1/20/2014
Tom Webinar 3/25/2014
Tom Email 4/1/2014
Tom Email 4/20/2014
', header=T, row.names = NULL)
library(data.table)
library(reshape2)
dt$ActivityType <- factor(dt$ActivityType)
dt$ActivityDate <- as.Date(dt$ActivityDate, "%m/%d/%Y")
dt <- dt[order(dt$Name, dt$ActivityDate),]
dt <- dcast(dt, Name + ActivityDate ~ ActivityType, fun.aggregate=length)
setDT(dt)
#Build reference table
Ref <- dt[,list(Compare_Value=list(I(Email)),Compare_Date=list(I(ActivityDate))), by=c("Name")]
#Use mapply to get last 21 days of value by Name
dt[,Email_RollingSum := mapply(ActivityDate=ActivityDate,Name=Name, function(ActivityDate, Name) {
d <- as.numeric(Ref$Compare_Date[[Name]] - ActivityDate)
sum((d <= 0 & d >= -21)*Ref$Compare_Value[[Name]])})]
这仅适用于ActivityType = Email,然后我必须对其他ActivityType级别执行相同的操作。我从中获得解决方案的链接谈到了使用“mcapply”而不是“mapply”。请让我知道如何使用mcapply或任何其他可使它更快的解决方案。
以下是预期的输出。对于每一行,我都选择ActivityDate和之前的21天,那21天是我的时间窗口。我计算了ActivityType =“Email”在该时间窗口中出现的所有时间。
Name ActivityType ActivityDate Email_RollingSum
John Email 1/1/2014 1
John Email 1/3/2014 2
John Webinar 1/5/2014 2
John Webinar 1/20/2014 2
John Webinar 3/25/2014 0
John Email 4/1/2014 1
John Email 4/20/2014 2
Tom Email 1/1/2014 1
Tom Webinar 1/5/2014 1
Tom Webinar 1/20/2014 1
Tom Webinar 3/25/2014 0
Tom Email 4/1/2014 1
Tom Email 4/20/2014 2
最佳答案
尝试一种将数据表用于名称和日期列表以及电子邮件数量来源的方法。这是通过在data.table
中使用DT
的i
参数中的DT
和by = .EACHI
来完成的。代码如下所示:
library(data.table)
# convert character dates to Date types
dt$ActivityDate <- as.Date(dt$ActivityDate, "%m/%d/%Y")
# convert to a 'data.table' and define key
setDT(dt, key = "Name")
# count emails and webinars
dt <- dt[dt[,.(Name, type = ActivityType, date = ActivityDate)],
.(type, date,
Email = sum(ActivityType == "Email" & between(ActivityDate, date-21, date)),
Webinar = sum(ActivityType == "Webinar" & between(ActivityDate, date-21, date))),
by=.EACHI]
以下内容使用与上述相同的方法,但包括一些更改,根据您的数据,这些更改可能会使速度提高30-40%。
setDT(dt, key = "Name")
dt[, ":="(ActivityDate = as.Date(dt$ActivityDate, "%m/%d/%Y"),
ActivityType = as.character(ActivityType) )]
dt4 <- dt[.(Name=Name, type=ActivityType, date=ActivityDate), {z=between(ActivityDate, date-21, date);
.( type, date,
Email=sum( (ActivityType %chin% "Email") & z),
Webinar=sum( (ActivityType %chin% "Webinar") & z) ) }
, by=.EACHI]
关于r - 对ActivityType进行21天滚动总和的最快方法,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/34455873/