汉诺塔的非递归实现(栈)

借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”),并保证每个移动符合汉诺塔问题的要求。

输入格式:

输入为一个正整数N,即起始柱上的盘数。

输出格式:

每个操作(移动)占一行,按柱1 -> 柱2的格式输出。

输入样例:

3

输出样例:

a -> c
a -> b
c -> b
a -> c
b -> a
b -> c
a -> c
#include<iostream>
#include<cstdio>
#include<stack>
#include<cmath>
using namespace std;
int main()
{
//  freopen("test.in","r",stdin);
    //freopen("test.out","w",stdout);
    int n,num=0,pan1,now;
    long long times;
    char a[3];
    stack <int> ta[3];
    cin>>n;
    for (int i=n;i>=1;i--)
      ta[0].push(i);
    now=0;
    if (n%2==1)
    {
        a[0]='a';
        a[1]='c';
        a[2]='b';
    }
    else
    {
        a[0]='a';
        a[1]='b';
        a[2]='c';
    }
    times=pow(2,n)-1;
    while (num<times)
    {
        num++;
        pan1=ta[now].top();
        ta[now].pop();
        ta[(now+1)%3].push(pan1);
        printf("%c -> %c\n",a[now],a[(now+1)%3]);
        num++;
        if (num>times)
          break;
        if (ta[now].size()!=0 and (ta[(now+2)%3].size()==0 or ta[now].top()<ta[(now+2)%3].top()))
        {
            ta[(now+2)%3].push(ta[now].top());
            ta[now].pop();
            printf("%c -> %c\n",a[now],a[(now+2)%3]);
        }
        else
        {
            ta[now].push(ta[(now+2)%3].top());
            ta[(now+2)%3].pop();
            printf("%c -> %c\n",a[(now+2)%3],a[now]);
        }
        now=(now+1)%3;
    }
    return 0;
}
12-20 00:05