我有一个包含10,000行的文件,每一行代表一个下载作业的参数。我喜欢5个自定义下载器。每个作业可能需要5秒钟到2分钟。如果该下载器当前无法正常工作,我将如何创建遍历10,000行的对象,将每个作业分配给该下载器?
编辑:
对我来说,最困难的部分是每个Downloader
是一个类的实例,实例之间的差异是实例化5个Downloader
对象中的每一个时我指定的port_numbers。所以我有a = Downloader(port_number=7751) ... e = Downloader(port_number=7755)
。然后,如果要使用Downloader
,我将执行a.run(row)
。
如何将工人定义为这些a, b, c, d, e
而不是downloader function
?
最佳答案
有很多方法可以做到-最简单的方法就是使用multiprocessing.Pool
并让它为您组织工作人员-1万行并不是很多,比方说一个平均URL甚至整整一个千字节。仍然只占用10MB的内存,而且内存很便宜。
因此,只需读取内存中的文件并将其映射到multiprocessing.Pool
即可进行出价:
from multiprocessing import Pool
def downloader(param): # our downloader process
# download code here
# param will hold a line from your file (including newline at the end, strip before use)
# e.g. res = requests.get(param.strip())
return True # lets provide some response back
if __name__ == "__main__": # important protection for cross-platform use
with open("your_file.dat", "r") as f: # open your file
download_jobs = f.readlines() # store each line in a list
download_pool = Pool(processes=5) # make our pool use 5 processes
responses = download_pool.map(downloader, download_jobs) # map our data, line by line
download_pool.close() # lets exit cleanly
# you can check the responses for each line in the `responses` list
如果需要共享内存,还可以使用
threading
代替multiprocessing
(或multiprocessing.pool.ThreadPool
的替代品)在单个进程内完成所有操作。除非您正在执行其他处理,否则单线程足以满足下载目的。更新
如果希望下载程序作为类实例运行,则可以将
downloader
函数转换为Downloader
实例的工厂,然后只需传递将URL实例化这些实例所需的内容即可。这是一种简单的循环方法:from itertools import cycle
from multiprocessing import Pool
class Downloader(object):
def __init__(self, port_number=8080):
self.port_number = port_number
def run(self, url):
print("Downloading {} on port {}".format(url, self.port_number))
def init_downloader(params): # our downloader initializator
downloader = Downloader(**params[0]) # instantiate our downloader
downloader.run(params[1]) # run our downloader
return True # you can provide your
if __name__ == "__main__": # important protection for cross-platform use
downloader_params = [ # Downloaders will be initialized using these params
{"port_number": 7751},
{"port_number": 7851},
{"port_number": 7951}
]
downloader_cycle = cycle(downloader_params) # use cycle for round-robin distribution
with open("your_file.dat", "r") as f: # open your file
# read our file line by line and attach downloader params to it
download_jobs = [[next(downloader_cycle), row.strip()] for row in f]
download_pool = Pool(processes=5) # make our pool use 5 processes
responses = download_pool.map(init_downloader, download_jobs) # map our data
download_pool.close() # lets exit cleanly
# you can check the responses for each line in the `responses` list
请记住,这不是最平衡的解决方案,因为它可能碰巧有两个运行相同端口的
Downloader
实例,但是它将平均处理足够大的数据。如果要确保没有两个
Downloader
实例在同一个端口上运行,则要么需要构建自己的池,要么需要创建一个中央进程来发布端口到您的Downloader
实例何时需要它们。