该问题已由另一位SO成员提出,但令人失望地删除了。评论说这些测量是有缺陷的,没有道理。
但是,我能够使用JMH下的一个小型基准重现原始问题:
package bench;
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.runner.*;
import org.openjdk.jmh.runner.options.*;
import java.util.concurrent.*;
@State(Scope.Benchmark)
public class LoopInc {
private int getValue() {
return ThreadLocalRandom.current().nextInt(2);
}
@Benchmark
public int directInc() {
int result = 0;
for (int i = 0; i < 1000; i++) {
switch (getValue()) {
case 0:
break;
case 1:
result++;
break;
}
}
return result;
}
@Benchmark
public int indirectInc() {
int result = 0;
for (int i = 0; i < 1000; i++) {
boolean incr = false;
switch (getValue()) {
case 0:
break;
case 1:
incr = true;
break;
}
if (incr) {
result++;
}
}
return result;
}
public static void main(String[] args) throws RunnerException {
Options options = new OptionsBuilder()
.include("bench.LoopInc.*")
.warmupIterations(5)
.measurementIterations(10)
.forks(3)
.timeUnit(TimeUnit.MILLISECONDS)
.build();
new Runner(options).run();
}
}
基准测试显示
indirectInc
的运行速度快了3倍,尽管“优化”一点都不明显。有人会认为indirectInc
的工作速度会慢一些,因为它涉及额外的中间操作。Benchmark Mode Cnt Score Error Units
LoopInc.directInc thrpt 30 127,301 ± 0,202 ops/ms
LoopInc.indirectInc thrpt 30 378,147 ± 1,144 ops/ms
java version "1.8.0_51"
Java(TM) SE Runtime Environment (build 1.8.0_51-b16)
Java HotSpot(TM) 64-Bit Server VM (build 25.51-b03, mixed mode)
是什么导致JIT比类似
indirectInc
更好地编译directInc
? 最佳答案
好的,这就是您处理这些事情的方式。
Benchmark Mode Cnt Score Error Units
LoopInc.directInc thrpt 15 175.678 ± 1.118 ops/ms
LoopInc.indirectInc thrpt 15 641.413 ± 9.722 ops/ms
-prof perfasm
的生成的程序集。长话短说,它会生成大量生成的代码,因此我们可能希望限制循环展开。但是,它可能会影响性能,并且几乎是原因。因此,让我们使用-XX:LoopUnrollLimit=1
重新运行。好的,分数较低,但差异仍然存在,非常好:Benchmark Mode Cnt Score Error Units
LoopInc.directInc thrpt 15 161.147 ± 6.101 ops/ms
LoopInc.indirectInc thrpt 15 489.430 ± 1.698 ops/ms
-prof perfnorm
的帮助下对每个基准操作标准化硬件计数器。让我们来看看:Benchmark Mode Cnt Score Error Units
LoopInc.directInc thrpt 15 161.875 ± 3.038 ops/ms
LoopInc.directInc:·CPI thrpt 3 0.967 ± 0.196 #/op
LoopInc.directInc:·L1-dcache-load-misses thrpt 3 0.394 ± 3.663 #/op
LoopInc.directInc:·L1-dcache-loads thrpt 3 2149.594 ± 228.166 #/op
LoopInc.directInc:·L1-dcache-store-misses thrpt 3 0.114 ± 1.001 #/op
LoopInc.directInc:·L1-dcache-stores thrpt 3 1073.666 ± 96.066 #/op
LoopInc.directInc:·L1-icache-load-misses thrpt 3 0.965 ± 22.984 #/op
LoopInc.directInc:·LLC-loads thrpt 3 0.204 ± 2.763 #/op
LoopInc.directInc:·LLC-stores thrpt 3 0.060 ± 0.633 #/op
LoopInc.directInc:·branch-misses thrpt 3 536.068 ± 43.293 #/op
LoopInc.directInc:·branches thrpt 3 3728.890 ± 220.539 #/op
LoopInc.directInc:·cycles thrpt 3 26219.146 ± 6287.590 #/op
LoopInc.directInc:·dTLB-load-misses thrpt 3 0.063 ± 0.124 #/op
LoopInc.directInc:·dTLB-loads thrpt 3 2136.942 ± 165.990 #/op
LoopInc.directInc:·dTLB-store-misses thrpt 3 0.022 ± 0.029 #/op
LoopInc.directInc:·dTLB-stores thrpt 3 1084.787 ± 417.281 #/op
LoopInc.directInc:·iTLB-load-misses thrpt 3 0.081 ± 0.333 #/op
LoopInc.directInc:·iTLB-loads thrpt 3 3.623 ± 19.955 #/op
LoopInc.directInc:·instructions thrpt 3 27114.052 ± 1843.720 #/op
LoopInc.indirectInc thrpt 15 489.164 ± 2.692 ops/ms
LoopInc.indirectInc:·CPI thrpt 3 0.281 ± 0.015 #/op
LoopInc.indirectInc:·L1-dcache-load-misses thrpt 3 0.503 ± 9.071 #/op
LoopInc.indirectInc:·L1-dcache-loads thrpt 3 2149.806 ± 369.040 #/op
LoopInc.indirectInc:·L1-dcache-store-misses thrpt 3 0.167 ± 1.370 #/op
LoopInc.indirectInc:·L1-dcache-stores thrpt 3 1073.895 ± 186.741 #/op
LoopInc.indirectInc:·L1-icache-load-misses thrpt 3 0.313 ± 1.275 #/op
LoopInc.indirectInc:·branch-misses thrpt 3 1.102 ± 0.375 #/op
LoopInc.indirectInc:·branches thrpt 3 2143.670 ± 228.475 #/op
LoopInc.indirectInc:·cycles thrpt 3 8701.665 ± 706.183 #/op
LoopInc.indirectInc:·dTLB-load-misses thrpt 3 0.020 ± 0.301 #/op
LoopInc.indirectInc:·dTLB-loads thrpt 3 2141.965 ± 135.852 #/op
LoopInc.indirectInc:·dTLB-store-misses thrpt 3 0.002 ± 0.029 #/op
LoopInc.indirectInc:·dTLB-stores thrpt 3 1070.376 ± 81.445 #/op
LoopInc.indirectInc:·iTLB-load-misses thrpt 3 0.007 ± 0.135 #/op
LoopInc.indirectInc:·iTLB-loads thrpt 3 0.310 ± 5.768 #/op
LoopInc.indirectInc:·instructions thrpt 3 30968.207 ± 3627.540 #/op
哦,这两个基准测试都有相当数量的指令。较慢的一个会花费更多的周期(这就是CPI在
directInc
中也不理想的原因;但是indirectInc
会产生接近理想的CPI)。如果仔细研究可能的原因:高速缓存未命中的次数不多,TLB未命中的次数也不多,但是慢速基准测试会导致很多分支未命中。啊!现在我们知道要在生成的代码中查找什么。 -prof perfasm
方便地突出显示跳转。然后你会看到这个...directInc :
╭│ 0x00007fa0a82a50ff: jmp 0x00007fa0a82a5116
11.39% 16.90% ││ ↗ 0x00007fa0a82a5101: inc %edx ;*iinc
││ │ ; - org.openjdk.LoopInc::directInc@46 (line 18)
12.52% 23.11% ││ │↗↗ 0x00007fa0a82a5103: mov %r10,0xe8(%r11) ;*invokevirtual putLong
││ │││ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241)
12.00% 8.14% ││ │││ 0x00007fa0a82a510a: inc %r8d ;*iinc
││ │││ ; - org.openjdk.LoopInc::directInc@46 (line 18)
0.03% 0.03% ││ │││ 0x00007fa0a82a510d: cmp $0x3e8,%r8d
│╰ │││ 0x00007fa0a82a5114: jge 0x00007fa0a82a50c7 ;*aload_0
│ │││ ; - org.openjdk.LoopInc::directInc@11 (line 19)
0.80% 0.91% ↘ │││ 0x00007fa0a82a5116: mov 0xf0(%r11),%r10d ;*invokevirtual getInt
│││ ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222)
4.28% 1.23% │││ 0x00007fa0a82a511d: test %r10d,%r10d
╭│││ 0x00007fa0a82a5120: je 0x00007fa0a82a517b ;*ifne
││││ ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222)
2.11% 0.01% ││││ 0x00007fa0a82a5122: movabs $0x9e3779b97f4a7c15,%r10
0.01% 0.07% ││││ 0x00007fa0a82a512c: add 0xe8(%r11),%r10 ;*ladd
││││ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242)
7.73% 1.89% ││││ 0x00007fa0a82a5133: mov %r10,%r9
1.21% 1.84% ││││ 0x00007fa0a82a5136: shr $0x21,%r9
1.90% 0.03% ││││ 0x00007fa0a82a513a: xor %r10,%r9
2.02% 0.03% ││││ 0x00007fa0a82a513d: movabs $0xff51afd7ed558ccd,%rcx
0.94% 1.82% ││││ 0x00007fa0a82a5147: imul %rcx,%r9 ;*lmul
││││ ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182)
7.01% 2.40% ││││ 0x00007fa0a82a514b: mov %r9,%rcx
││││ 0x00007fa0a82a514e: shr $0x21,%rcx
1.89% 0.70% ││││ 0x00007fa0a82a5152: xor %r9,%rcx
3.11% 2.55% ││││ 0x00007fa0a82a5155: movabs $0xc4ceb9fe1a85ec53,%r9
0.99% 1.50% ││││ 0x00007fa0a82a515f: imul %r9,%rcx
7.66% 2.89% ││││ 0x00007fa0a82a5163: shr $0x20,%rcx
3.70% 1.97% ││││ 0x00007fa0a82a5167: mov %ecx,%r9d
0.11% ││││ 0x00007fa0a82a516a: and $0x1,%r9d ;*iand
││││ ; - java.util.concurrent.ThreadLocalRandom::nextInt@34 (line 356)
3.76% 11.13% ││││ 0x00007fa0a82a516e: cmp $0x1,%r9d
│╰││ 0x00007fa0a82a5172: je 0x00007fa0a82a5101
10.48% 16.62% │ ││ 0x00007fa0a82a5174: test %r9d,%r9d
│ ╰│ 0x00007fa0a82a5177: je 0x00007fa0a82a5103 ;*lookupswitch
│ │ ; - org.openjdk.LoopInc::directInc@15 (line 19)
│ ╰ 0x00007fa0a82a5179: jmp 0x00007fa0a82a5103 ;*aload_0
│ ; - org.openjdk.LoopInc::directInc@11 (line 19)
↘ 0x00007fa0a82a517b: mov $0xffffff5d,%esi
indirectInc :
0.01% 0.01% ↗ 0x00007f65588d8260: mov %edx,%r9d
0.01% │ 0x00007f65588d8263: nopw 0x0(%rax,%rax,1)
11.99% 11.38% │ 0x00007f65588d826c: data16 data16 xchg %ax,%ax ;*iconst_0
│ ; - org.openjdk.LoopInc::indirectInc@11 (line 34)
│ 0x00007f65588d8270: mov 0xf0(%r8),%r10d ;*invokevirtual getInt
│ ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222)
│ 0x00007f65588d8277: test %r10d,%r10d
│ 0x00007f65588d827a: je 0x00007f65588d8331 ;*ifne
│ ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222)
0.01% │ 0x00007f65588d8280: movabs $0x9e3779b97f4a7c15,%r10
11.80% 11.49% │ 0x00007f65588d828a: add 0xe8(%r8),%r10 ;*ladd
│ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242)
0.01% 0.01% │ 0x00007f65588d8291: mov %r10,0xe8(%r8) ;*invokevirtual putLong
│ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241)
│ 0x00007f65588d8298: mov %r9d,%edx
0.01% 0.01% │ 0x00007f65588d829b: inc %edx
11.12% 12.40% │ 0x00007f65588d829d: mov %r10,%rcx
0.01% │ 0x00007f65588d82a0: shr $0x21,%rcx
0.03% │ 0x00007f65588d82a4: xor %r10,%rcx
0.06% 0.03% │ 0x00007f65588d82a7: movabs $0xff51afd7ed558ccd,%r10
12.38% 13.94% │ 0x00007f65588d82b1: imul %r10,%rcx ;*lmul
│ ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182)
0.03% 0.01% │ 0x00007f65588d82b5: mov %rcx,%r10
│ 0x00007f65588d82b8: shr $0x21,%r10
0.03% │ 0x00007f65588d82bc: xor %rcx,%r10
11.43% 12.62% │ 0x00007f65588d82bf: movabs $0xc4ceb9fe1a85ec53,%rcx
0.01% │ 0x00007f65588d82c9: imul %rcx,%r10
0.34% 0.30% │ 0x00007f65588d82cd: shr $0x20,%r10
0.85% 0.76% │ 0x00007f65588d82d1: mov %r10d,%r10d
11.81% 11.51% │ 0x00007f65588d82d4: and $0x1,%r10d
2.16% 1.78% │ 0x00007f65588d82d8: cmp $0x1,%r10d
3.45% 3.00% │ 0x00007f65588d82dc: cmovne %r9d,%edx <----- HERE IT IS
17.55% 15.86% │ 0x00007f65588d82e0: inc %r11d ;*iinc
│ ; - org.openjdk.LoopInc::indirectInc@56 (line 33)
│ 0x00007f65588d82e3: cmp $0x3e8,%r11d
╰ 0x00007f65588d82ea: jl 0x00007f65588d8260 ;*if_icmpge
; - org.openjdk.LoopInc::indirectInc@8 (line 33)
注意
cmovne
而不是jmp
,这就是我们拥有更多“可预测”分支的原因。 HotSpot对分支进行轮廓分析,并在分支轮廓分支非常平坦时发出条件移动。换句话说,通过为条件移动的额外等待时间付出一点代价来避免很可能发生的分支错误预测。但是,在这种情况下,switch是特殊的:它具有两个以上的选择(0、1和“nothing”)。我推测这就是为什么result
增量没有被折叠到cmov中的原因。 (通常来说,HotSpot可以将“default”中的零存储到result
中,但是很好用了)directCompleteInc
案例,在这里我们仍然使用switch
,但是现在涵盖了所有案例:@Benchmark
public int directCompleteInc() {
int result = 0;
for (int i = 0; i < 1000; i++) {
switch (getValue()) {
case 1:
result++;
break;
default:
break;
}
}
return result;
}
...并对其进行测量,这次没有任何选择,就像OP所做的那样:
Benchmark Mode Cnt Score Error Units
LoopInc.directCompleteInc thrpt 5 644.414 ± 0.371 ops/ms
LoopInc.directInc thrpt 5 174.974 ± 0.103 ops/ms
LoopInc.indirectInc thrpt 5 644.015 ± 0.533 ops/ms
那里。
directCompleteInc
正在将cmov
与-prof perfasm
一起使用。是的