该问题已由另一位SO成员提出,但令人失望地删除了。评论说这些测量是有缺陷的,没有道理。

但是,我能够使用JMH下的一个小型基准重现原始问题:

package bench;

import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.runner.*;
import org.openjdk.jmh.runner.options.*;
import java.util.concurrent.*;

@State(Scope.Benchmark)
public class LoopInc {

    private int getValue() {
        return ThreadLocalRandom.current().nextInt(2);
    }

    @Benchmark
    public int directInc() {
        int result = 0;
        for (int i = 0; i < 1000; i++) {
            switch (getValue()) {
                case 0:
                    break;
                case 1:
                    result++;
                    break;
            }
        }
        return result;
    }

    @Benchmark
    public int indirectInc() {
        int result = 0;
        for (int i = 0; i < 1000; i++) {
            boolean incr = false;
            switch (getValue()) {
                case 0:
                    break;
                case 1:
                    incr = true;
                    break;
            }

            if (incr) {
                result++;
            }
        }
        return result;
    }

    public static void main(String[] args) throws RunnerException {
        Options options = new OptionsBuilder()
                .include("bench.LoopInc.*")
                .warmupIterations(5)
                .measurementIterations(10)
                .forks(3)
                .timeUnit(TimeUnit.MILLISECONDS)
                .build();
        new Runner(options).run();
    }
}

基准测试显示indirectInc的运行速度快了3倍,尽管“优化”一点都不明显。有人会认为indirectInc的工作速度会慢一些,因为它涉及额外的中间操作。
Benchmark             Mode  Cnt    Score   Error   Units
LoopInc.directInc    thrpt   30  127,301 ± 0,202  ops/ms
LoopInc.indirectInc  thrpt   30  378,147 ± 1,144  ops/ms
java version "1.8.0_51"
Java(TM) SE Runtime Environment (build 1.8.0_51-b16)
Java HotSpot(TM) 64-Bit Server VM (build 25.51-b03, mixed mode)

是什么导致JIT比类似indirectInc更好地编译directInc

最佳答案

好的,这就是您处理这些事情的方式。

  • 尝试重现它。好吧,它复制:
    Benchmark             Mode  Cnt    Score   Error   Units
    LoopInc.directInc    thrpt   15  175.678 ± 1.118  ops/ms
    LoopInc.indirectInc  thrpt   15  641.413 ± 9.722  ops/ms
    
  • 尝试查看带有-prof perfasm的生成的程序集。长话短说,它会生成大量生成的代码,因此我们可能希望限制循环展开。但是,它可能会影响性能,并且几乎是原因。因此,让我们使用-XX:LoopUnrollLimit=1重新运行。好的,分数较低,但差异仍然存在,非常好:
    Benchmark             Mode  Cnt    Score   Error   Units
    LoopInc.directInc    thrpt   15  161.147 ± 6.101  ops/ms
    LoopInc.indirectInc  thrpt   15  489.430 ± 1.698  ops/ms
    
  • 再看一下生成的代码,仍然看不到任何东西。好吧,这似乎很有趣。让我们正确地进行。我们可以描述工作量吗?当然,我们可以在-prof perfnorm的帮助下对每个基准操作标准化硬件计数器。让我们来看看:
    Benchmark                                     Mode  Cnt      Score      Error   Units
    LoopInc.directInc                            thrpt   15    161.875 ±    3.038  ops/ms
    LoopInc.directInc:·CPI                       thrpt    3      0.967 ±    0.196    #/op
    LoopInc.directInc:·L1-dcache-load-misses     thrpt    3      0.394 ±    3.663    #/op
    LoopInc.directInc:·L1-dcache-loads           thrpt    3   2149.594 ±  228.166    #/op
    LoopInc.directInc:·L1-dcache-store-misses    thrpt    3      0.114 ±    1.001    #/op
    LoopInc.directInc:·L1-dcache-stores          thrpt    3   1073.666 ±   96.066    #/op
    LoopInc.directInc:·L1-icache-load-misses     thrpt    3      0.965 ±   22.984    #/op
    LoopInc.directInc:·LLC-loads                 thrpt    3      0.204 ±    2.763    #/op
    LoopInc.directInc:·LLC-stores                thrpt    3      0.060 ±    0.633    #/op
    LoopInc.directInc:·branch-misses             thrpt    3    536.068 ±   43.293    #/op
    LoopInc.directInc:·branches                  thrpt    3   3728.890 ±  220.539    #/op
    LoopInc.directInc:·cycles                    thrpt    3  26219.146 ± 6287.590    #/op
    LoopInc.directInc:·dTLB-load-misses          thrpt    3      0.063 ±    0.124    #/op
    LoopInc.directInc:·dTLB-loads                thrpt    3   2136.942 ±  165.990    #/op
    LoopInc.directInc:·dTLB-store-misses         thrpt    3      0.022 ±    0.029    #/op
    LoopInc.directInc:·dTLB-stores               thrpt    3   1084.787 ±  417.281    #/op
    LoopInc.directInc:·iTLB-load-misses          thrpt    3      0.081 ±    0.333    #/op
    LoopInc.directInc:·iTLB-loads                thrpt    3      3.623 ±   19.955    #/op
    LoopInc.directInc:·instructions              thrpt    3  27114.052 ± 1843.720    #/op
    
    LoopInc.indirectInc                          thrpt   15    489.164 ±    2.692  ops/ms
    LoopInc.indirectInc:·CPI                     thrpt    3      0.281 ±    0.015    #/op
    LoopInc.indirectInc:·L1-dcache-load-misses   thrpt    3      0.503 ±    9.071    #/op
    LoopInc.indirectInc:·L1-dcache-loads         thrpt    3   2149.806 ±  369.040    #/op
    LoopInc.indirectInc:·L1-dcache-store-misses  thrpt    3      0.167 ±    1.370    #/op
    LoopInc.indirectInc:·L1-dcache-stores        thrpt    3   1073.895 ±  186.741    #/op
    LoopInc.indirectInc:·L1-icache-load-misses   thrpt    3      0.313 ±    1.275    #/op
    LoopInc.indirectInc:·branch-misses           thrpt    3      1.102 ±    0.375    #/op
    LoopInc.indirectInc:·branches                thrpt    3   2143.670 ±  228.475    #/op
    LoopInc.indirectInc:·cycles                  thrpt    3   8701.665 ±  706.183    #/op
    LoopInc.indirectInc:·dTLB-load-misses        thrpt    3      0.020 ±    0.301    #/op
    LoopInc.indirectInc:·dTLB-loads              thrpt    3   2141.965 ±  135.852    #/op
    LoopInc.indirectInc:·dTLB-store-misses       thrpt    3      0.002 ±    0.029    #/op
    LoopInc.indirectInc:·dTLB-stores             thrpt    3   1070.376 ±   81.445    #/op
    LoopInc.indirectInc:·iTLB-load-misses        thrpt    3      0.007 ±    0.135    #/op
    LoopInc.indirectInc:·iTLB-loads              thrpt    3      0.310 ±    5.768    #/op
    LoopInc.indirectInc:·instructions            thrpt    3  30968.207 ± 3627.540    #/op
    

    哦,这两个基准测试都有相当数量的指令。较慢的一个会花费更多的周期(这就是CPI在directInc中也不理想的原因;但是indirectInc会产生接近理想的CPI)。如果仔细研究可能的原因:高速缓存未命中的次数不多,TLB未命中的次数也不多,但是慢速基准测试会导致很多分支未命中。啊!现在我们知道要在生成的代码中查找什么。
  • 让我们再次看看生成的代码。 -prof perfasm方便地突出显示跳转。然后你会看到这个...

    directInc :
                      ╭│      0x00007fa0a82a50ff: jmp    0x00007fa0a82a5116
     11.39%   16.90%  ││ ↗    0x00007fa0a82a5101: inc    %edx               ;*iinc
                      ││ │                                                  ; - org.openjdk.LoopInc::directInc@46 (line 18)
     12.52%   23.11%  ││ │↗↗  0x00007fa0a82a5103: mov    %r10,0xe8(%r11)    ;*invokevirtual putLong
                      ││ │││                                                ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241)
     12.00%    8.14%  ││ │││  0x00007fa0a82a510a: inc    %r8d               ;*iinc
                      ││ │││                                                ; - org.openjdk.LoopInc::directInc@46 (line 18)
      0.03%    0.03%  ││ │││  0x00007fa0a82a510d: cmp    $0x3e8,%r8d
                      │╰ │││  0x00007fa0a82a5114: jge    0x00007fa0a82a50c7  ;*aload_0
                      │  │││                                                ; - org.openjdk.LoopInc::directInc@11 (line 19)
      0.80%    0.91%  ↘  │││  0x00007fa0a82a5116: mov    0xf0(%r11),%r10d   ;*invokevirtual getInt
                         │││                                                ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222)
      4.28%    1.23%     │││  0x00007fa0a82a511d: test   %r10d,%r10d
                        ╭│││  0x00007fa0a82a5120: je     0x00007fa0a82a517b  ;*ifne
                        ││││                                                ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222)
      2.11%    0.01%    ││││  0x00007fa0a82a5122: movabs $0x9e3779b97f4a7c15,%r10
      0.01%    0.07%    ││││  0x00007fa0a82a512c: add    0xe8(%r11),%r10    ;*ladd
                        ││││                                                ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242)
      7.73%    1.89%    ││││  0x00007fa0a82a5133: mov    %r10,%r9
      1.21%    1.84%    ││││  0x00007fa0a82a5136: shr    $0x21,%r9
      1.90%    0.03%    ││││  0x00007fa0a82a513a: xor    %r10,%r9
      2.02%    0.03%    ││││  0x00007fa0a82a513d: movabs $0xff51afd7ed558ccd,%rcx
      0.94%    1.82%    ││││  0x00007fa0a82a5147: imul   %rcx,%r9           ;*lmul
                        ││││                                                ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182)
      7.01%    2.40%    ││││  0x00007fa0a82a514b: mov    %r9,%rcx
                        ││││  0x00007fa0a82a514e: shr    $0x21,%rcx
      1.89%    0.70%    ││││  0x00007fa0a82a5152: xor    %r9,%rcx
      3.11%    2.55%    ││││  0x00007fa0a82a5155: movabs $0xc4ceb9fe1a85ec53,%r9
      0.99%    1.50%    ││││  0x00007fa0a82a515f: imul   %r9,%rcx
      7.66%    2.89%    ││││  0x00007fa0a82a5163: shr    $0x20,%rcx
      3.70%    1.97%    ││││  0x00007fa0a82a5167: mov    %ecx,%r9d
               0.11%    ││││  0x00007fa0a82a516a: and    $0x1,%r9d          ;*iand
                        ││││                                                ; - java.util.concurrent.ThreadLocalRandom::nextInt@34 (line 356)
      3.76%   11.13%    ││││  0x00007fa0a82a516e: cmp    $0x1,%r9d
                        │╰││  0x00007fa0a82a5172: je     0x00007fa0a82a5101
     10.48%   16.62%    │ ││  0x00007fa0a82a5174: test   %r9d,%r9d
                        │ ╰│  0x00007fa0a82a5177: je     0x00007fa0a82a5103  ;*lookupswitch
                        │  │                                                ; - org.openjdk.LoopInc::directInc@15 (line 19)
                        │  ╰  0x00007fa0a82a5179: jmp    0x00007fa0a82a5103  ;*aload_0
                        │                                                   ; - org.openjdk.LoopInc::directInc@11 (line 19)
                        ↘     0x00007fa0a82a517b: mov    $0xffffff5d,%esi
    

    indirectInc :
      0.01%    0.01%  ↗  0x00007f65588d8260: mov    %edx,%r9d
      0.01%           │  0x00007f65588d8263: nopw   0x0(%rax,%rax,1)
     11.99%   11.38%  │  0x00007f65588d826c: data16 data16 xchg %ax,%ax  ;*iconst_0
                      │                                                ; - org.openjdk.LoopInc::indirectInc@11 (line 34)
                      │  0x00007f65588d8270: mov    0xf0(%r8),%r10d    ;*invokevirtual getInt
                      │                                                ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222)
                      │  0x00007f65588d8277: test   %r10d,%r10d
                      │  0x00007f65588d827a: je     0x00007f65588d8331  ;*ifne
                      │                                                ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222)
      0.01%           │  0x00007f65588d8280: movabs $0x9e3779b97f4a7c15,%r10
     11.80%   11.49%  │  0x00007f65588d828a: add    0xe8(%r8),%r10     ;*ladd
                      │                                                ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242)
      0.01%    0.01%  │  0x00007f65588d8291: mov    %r10,0xe8(%r8)     ;*invokevirtual putLong
                      │                                                ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241)
                      │  0x00007f65588d8298: mov    %r9d,%edx
      0.01%    0.01%  │  0x00007f65588d829b: inc    %edx
     11.12%   12.40%  │  0x00007f65588d829d: mov    %r10,%rcx
               0.01%  │  0x00007f65588d82a0: shr    $0x21,%rcx
      0.03%           │  0x00007f65588d82a4: xor    %r10,%rcx
      0.06%    0.03%  │  0x00007f65588d82a7: movabs $0xff51afd7ed558ccd,%r10
     12.38%   13.94%  │  0x00007f65588d82b1: imul   %r10,%rcx          ;*lmul
                      │                                                ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182)
      0.03%    0.01%  │  0x00007f65588d82b5: mov    %rcx,%r10
                      │  0x00007f65588d82b8: shr    $0x21,%r10
               0.03%  │  0x00007f65588d82bc: xor    %rcx,%r10
     11.43%   12.62%  │  0x00007f65588d82bf: movabs $0xc4ceb9fe1a85ec53,%rcx
               0.01%  │  0x00007f65588d82c9: imul   %rcx,%r10
      0.34%    0.30%  │  0x00007f65588d82cd: shr    $0x20,%r10
      0.85%    0.76%  │  0x00007f65588d82d1: mov    %r10d,%r10d
     11.81%   11.51%  │  0x00007f65588d82d4: and    $0x1,%r10d
      2.16%    1.78%  │  0x00007f65588d82d8: cmp    $0x1,%r10d
      3.45%    3.00%  │  0x00007f65588d82dc: cmovne %r9d,%edx         <----- HERE IT IS
     17.55%   15.86%  │  0x00007f65588d82e0: inc    %r11d              ;*iinc
                      │                                                ; - org.openjdk.LoopInc::indirectInc@56 (line 33)
                      │  0x00007f65588d82e3: cmp    $0x3e8,%r11d
                      ╰  0x00007f65588d82ea: jl     0x00007f65588d8260  ;*if_icmpge
                                                               ; - org.openjdk.LoopInc::indirectInc@8 (line 33)
    

    注意cmovne而不是jmp,这就是我们拥有更多“可预测”分支的原因。 HotSpot对分支进行轮廓分析,并在分支轮廓分支非常平坦时发出条件移动。换句话说,通过为条件移动的额外等待时间付出一点代价来避免很可能发生的分支错误预测。但是,在这种情况下,switch是特殊的:它具有两个以上的选择(0、1和“nothing”)。我推测这就是为什么result增量没有被折叠到cmov中的原因。 (通常来说,HotSpot可以将“default”中的零存储到result中,但是很好用了)
  • 为了确认该假设,让我们创建一个directCompleteInc案例,在这里我们仍然使用switch,但是现在涵盖了所有案例:
    @Benchmark
    public int directCompleteInc() {
        int result = 0;
        for (int i = 0; i < 1000; i++) {
            switch (getValue()) {
                case 1:
                    result++;
                    break;
                default:
                    break;
            }
        }
        return result;
    }
    

    ...并对其进行测量,这次没有任何选择,就像OP所做的那样:
    Benchmark                   Mode  Cnt    Score    Error   Units
    LoopInc.directCompleteInc  thrpt    5  644.414 ±  0.371  ops/ms
    LoopInc.directInc          thrpt    5  174.974 ±  0.103  ops/ms
    LoopInc.indirectInc        thrpt    5  644.015 ±  0.533  ops/ms
    

    那里。
  • 确认directCompleteInc正在将cmov-prof perfasm一起使用。是的
  • 喝一杯。
  • 07-26 09:36