我尝试将gmpy2.mpz转换为numpy布尔数组,但不能完全正确。 (gmpy2:https://gmpy2.readthedocs.io)
import gmpy2
import numpy as np
x = gmpy2.mpz(int('1'*1000,2))
print("wrong conversion 1")
y = np.fromstring(gmpy2.to_binary(x), dtype=bool) # this is wrong
print(np.sum(y)) # this returns 127 instead of 1000
print("wrong conversion 2")
y = np.fromstring(gmpy2.to_binary(x), dtype=np.uint8)
print(y) # array([ 1, 1, 255 ... 255], dtype=uint8)
y_bool = np.unpackbits(y)
slow_popcount = np.sum(y_bool, dtype=int)
print(slow_popcount) # 1002. should be 1000
print("Fudging an answer. This is wrong as well.")
y = np.fromstring(gmpy2.to_binary(x)[2:], dtype=np.uint8)
# is that slicing [2:] a slow operation?
y_bool = np.unpackbits(y)
print np.sum(y_bool, dtype=int) # 1000
更多测试:
np.fromstring(gmpy2.to_binary(gmpy2.mpz(int('1'*64,2))), dtype=np.uint8)
# array([ 1, 1, 255, 255, 255, 255, 255, 255, 255, 255], dtype=uint8)
np.fromstring(gmpy2.to_binary(gmpy2.mpz(int('1'*65,2))), dtype=np.uint8)
# array([ 1, 1, 255, 255, 255, 255, 255, 255, 255, 255, 1], dtype=uint8
np.fromstring(gmpy2.to_binary(gmpy2.mpz(int('1'*66,2))), dtype=np.uint8)
# array([ 1, 1, 255, 255, 255, 255, 255, 255, 255, 255, 3], dtype=uint8)
np.fromstring(gmpy2.to_binary(gmpy2.mpz(int('1'*1024,2))), dtype=np.uint8)
# array([ 1, 1, 255 ... 255], dtype=uint8)
顺便说一句,我实际上想快速获取gmpy2.mpz的所有设置位的索引的列表,数组或numpy数组。我尝试转换的实际4,777,000 gmpy2.mpz具有760,000位,其中约2,000位为1。计算机上的gmp库是使用intel icc编译的。
谢谢
最佳答案
有两种选择。函数gmpy2.bit_scan1(x, n)
将返回索引> = n的设置的第一位的索引。
>>> x = gmpy2.mpz(123456)
>>> bin(x)
'0b11110001001000000'
>>> n = 0
>>> while True:
... n = gmpy2.bit_scan1(x, n)
... if n is None:
... break
... print(n)
... n = n + 1
...
6
9
13
14
15
16
gmpy2
还支持称为xmpz
的整数类型。它是mpz
类型的实验版本。主要区别在于xmpz
类型是可变的-就地操作将直接修改值,而无需创建副本。这使得xmpz
类型对于位操作非常有用。例如,您可以使用切片符号提取和修改位位置。xmpz
类型还支持称为iter_set
,iter_clear
和iter_bits
的方法。>>> x_str='1'*8+'01'
>>> x_int=gmpy2.xmpz(x_str, 2)
>>> list(x_int.iter_set())
[0, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(x_int.iter_clear())
[1]
>>> list(x_int.iter_bits())
[True, False, True, True, True, True, True, True, True, True]
我最初编写
xmpz
类型来评估用于优化就地操作的任何性能改进。比特操作带来了最大的好处。这是Eratosthenes筛网的简短快速实现。def sieve(limit=1000000):
'''Returns a generator that yields the prime numbers up to limit.'''
sieve_limit = gmpy2.isqrt(limit) + 1
limit += 1
# Mark bit positions 0 and 1 as not prime.
bitmap = gmpy2.xmpz(3)
# Process 2 separately. This allows us to use p+p for the step size
# when sieving the remaining primes.
bitmap[4 : limit : 2] = -1
# Sieve the remaining primes.
for p in bitmap.iter_clear(3, sieve_limit):
bitmap[p*p : limit : p+p] = -1
return bitmap.iter_clear(2, limit)
关于python - 有效地将gmpy2.mpz转换为numpy bool 数组,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/37517022/