我尝试使用 R 重现一些 SAS 输出。我想重现的方法是:
使用混合模型对因子时间进行重复测量的两种方差分析(协方差矩阵 = CS,估计方法 = REML)
一切看起来都很好,除了 AIC ......我想知道是否有人知道 SAS 使用的 AIC 公式......
主要的 SAS 输出是:
如果 loglik 相同,则 Anova 表是相同的,但 AIC(和 BIC)事件则不同。
这就是我对 R 所做的:
library(nlme)
dataset_melt <- structure(list(Groupe = c("A", "A", "A", "A", "A", "B", "B",
"B", "B", "B", "C", "C", "C", "C", "C", "A", "A", "A", "A", "A",
"B", "B", "B", "B", "B", "C", "C", "C", "C", "C", "A", "A", "A",
"A", "A", "B", "B", "B", "B", "B", "C", "C", "C", "C", "C", "A",
"A", "A", "A", "A", "B", "B", "B", "B", "B", "C", "C", "C", "C",
"C", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B", "C", "C",
"C", "C", "C"), ID = c("01/001", "01/002", "01/003", "01/004",
"01/005", "02/001", "02/002", "02/003", "02/004", "02/005", "03/001",
"03/002", "03/003", "03/004", "03/005", "01/001", "01/002", "01/003",
"01/004", "01/005", "02/001", "02/002", "02/003", "02/004", "02/005",
"03/001", "03/002", "03/003", "03/004", "03/005", "01/001", "01/002",
"01/003", "01/004", "01/005", "02/001", "02/002", "02/003", "02/004",
"02/005", "03/001", "03/002", "03/003", "03/004", "03/005", "01/001",
"01/002", "01/003", "01/004", "01/005", "02/001", "02/002", "02/003",
"02/004", "02/005", "03/001", "03/002", "03/003", "03/004", "03/005",
"01/001", "01/002", "01/003", "01/004", "01/005", "02/001", "02/002",
"02/003", "02/004", "02/005", "03/001", "03/002", "03/003", "03/004",
"03/005"), temps = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L), .Label = c("T0", "T1", "T2", "T3", "T4"), class = "factor"),
value = c(29.4, 21, 23.4, 26.2, 28.5, 27.8, 27.2, 20.6, 20.2,
25.3, 26.2, 29.2, 27.1, 23.1, 20.6, 22.9, 29.6, 20.9, 25.2,
25, 26, 26.7, 25.1, 21, 28.2, 23.4, 27.1, 29.8, 22.2, 26.6,
29.9, 29.1, 23.4, 22.6, 25.7, 24.5, 29.6, 21.5, 28.9, 20.1,
26.5, 23.4, 24.9, 25.3, 25, 27.4, 29.5, 24.6, 27.4, 24.6,
21.3, 23.6, 22.8, 23.6, 20.6, 26.5, 29.2, 20.6, 25.7, 29.1,
23.7, 24.3, 28.7, 21.9, 23.7, 29.8, 27.1, 28.7, 28.3, 20.4,
28.7, 20.3, 22.8, 23.4, 21.5)), row.names = c(NA, -75L), .Names = c("Groupe",
"ID", "temps", "value"), class = "data.frame")
options(contrasts=c("contr.SAS","contr.poly"))
mon_lme <- lme(value ~ Groupe *temps, random = ~ +1 | ID,
correlation=corCompSymm(form=~temps|ID), #na.action = na.exclude,
data = dataset_melt,method='REML')
anova(mon_lme) # quite same as SAS
summary(mon_lme)$AIC
# 363.938
summary(mon_lme)$BIC
# 399.5419
k <- attr(logLik(mon_lme), "df")
aic <- 2 * k -2 * logLik(mon_lme)
aic
-2 * logLik(mon_lme) # the same as SAS
#'log Lik.' 329.6698 (df=18)
什么是SAS AIC计算方法?
问候
最佳答案
您可以在帮助页面中根据 SAS 找到 AIC 的计算,例如:
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_mixed_sect008.htm#statug.mixed.mixedic
AIC 在这里计算为 -2LL + 2d
LL 是对数似然的最大值,d 是模型的维度。在受限似然估计的情况下,d 表示估计协方差参数的有效数量。在这种情况下,这是 2 个参数,如您的输出所示。
另一方面,R 使用由 Pinheiro 和 Bates 计算的自由度。在混合模型的背景下,他们对自由度的解释与 SAS 使用的模型大不相同。您可以通过使用函数 logLik
看到:
> logLik(mon_lme)
'log Lik.' -164.8349 (df=18)
所以在R中,d的值是18。但是R也用k=2来进行AIC的标准计算。
关于r - 混合模型的 R 和 SAS 中的 AIC 计算不匹配,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/48152695/