什么是分布式锁
我们先来看下,一把靠谱的分布式锁应该有哪些特征:
Redis分布式锁方案一:SETNX + EXPIRE
提到Redis的分布式锁,很多小伙伴马上就会想到setnx
+ expire
命令。即先用setnx
来抢锁,如果抢到之后,再用expire
给锁设置一个过期时间,防止锁忘记了释放。
假设某电商网站的某商品做秒杀活动,key可以设置为key_resource_id,value设置任意值,伪代码如下:
if(jedis.setnx(key_resource_id,lock_value) == 1){ //加锁
expire(key_resource_id,100); //设置过期时间
try {
do something //业务请求
}catch(){
}
finally {
jedis.del(key_resource_id); //释放锁
}
}
但是这个方案中,setnx
和expire
两个命令分开了,「不是原子操作」。如果执行完setnx
加锁,正要执行expire
设置过期时间时,进程crash或者要重启维护了,那么这个锁就“长生不老”了,「别的线程永远获取不到锁啦」。
Redis分布式锁方案二:SETNX + value值是(系统时间+过期时间)
为了解决方案一,「发生异常锁得不到释放的场景」,有小伙伴认为,可以把过期时间放到setnx
的value值里面。如果加锁失败,再拿出value值校验一下即可。加锁代码如下:
long expires = System.currentTimeMillis() + expireTime; //系统时间+设置的过期时间
String expiresStr = String.valueOf(expires);
// 如果当前锁不存在,返回加锁成功
if (jedis.setnx(key_resource_id, expiresStr) == 1) {
return true;
}
// 如果锁已经存在,获取锁的过期时间
String currentValueStr = jedis.get(key_resource_id);
// 如果获取到的过期时间,小于系统当前时间,表示已经过期
if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {
// 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)
String oldValueStr = jedis.getSet(key_resource_id, expiresStr);
if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
// 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁
return true;
}
}
//其他情况,均返回加锁失败
return false;
}
这个方案的优点是,巧妙移除expire
单独设置过期时间的操作,把「过期时间放到setnx的value值」里面来。解决了方案一发生异常,锁得不到释放的问题。但是这个方案还有别的缺点:
Redis分布式锁方案三:使用Lua脚本(包含SETNX + EXPIRE两条指令)
实际上,我们还可以使用Lua脚本来保证原子性(包含setnx和expire两条指令),lua脚本如下:
if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then
redis.call('expire',KEYS[1],ARGV[2])
else
return 0
end;
加锁代码如下:
String lua_scripts = "if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then" +
" redis.call('expire',KEYS[1],ARGV[2]) return 1 else return 0 end";
Object result = jedis.eval(lua_scripts, Collections.singletonList(key_resource_id), Collections.singletonList(values));
//判断是否成功
return result.equals(1L);
这个方案,跟方案二对比,你觉得哪个更好呢?
Redis分布式锁方案方案四:SET的扩展命令(SET EX PX NX)
除了使用,使用Lua脚本,保证SETNX + EXPIRE
两条指令的原子性,我们还可以巧用Redis的SET指令扩展参数!(SET key value[EX seconds][PX milliseconds][NX|XX]
),它也是原子性的!
伪代码demo如下:
if(jedis.set(key_resource_id, lock_value, "NX", "EX", 100s) == 1){ //加锁
try {
do something //业务处理
}catch(){
}
finally {
jedis.del(key_resource_id); //释放锁
}
}
但是呢,这个方案还是可能存在问题:
方案五:SET EX PX NX + 校验唯一随机值,再删除
既然锁可能被别的线程误删,那我们给value值设置一个标记当前线程唯一的随机数,在删除的时候,校验一下,不就OK了嘛。伪代码如下:
if(jedis.set(key_resource_id, uni_request_id, "NX", "EX", 100s) == 1){ //加锁
try {
do something //业务处理
}catch(){
}
finally {
//判断是不是当前线程加的锁,是才释放
if (uni_request_id.equals(jedis.get(key_resource_id))) {
jedis.del(lockKey); //释放锁
}
}
}
在这里,「判断是不是当前线程加的锁」和「释放锁」不是一个原子操作。如果调用jedis.del()释放锁的时候,可能这把锁已经不属于当前客户端,会解除他人加的锁。
为了更严谨,一般也是用lua脚本代替。lua脚本如下:
if redis.call('get',KEYS[1]) == ARGV[1] then
return redis.call('del',KEYS[1])
else
return 0
end;
Redis分布式锁方案六:Redisson框架
方案五还是可能存在「锁过期释放,业务没执行完」的问题。有些小伙伴认为,稍微把锁过期时间设置长一些就可以啦。其实我们设想一下,是否可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。
当前开源框架Redisson解决了这个问题。我们一起来看下Redisson底层原理图吧:
只要线程一加锁成功,就会启动一个watch dog
看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程1还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用Redisson解决了「锁过期释放,业务没执行完」问题。
Redis分布式锁方案七:多机实现的分布式锁Redlock+Redisson
前面六种方案都只是基于单机版的讨论,还不是很完美。其实Redis一般都是集群部署的:
如果线程一在Redis的master节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。
为了解决这个问题,Redis作者 antirez提出一种高级的分布式锁算法:Redlock。Redlock核心思想是这样的:
我们假设当前有5个Redis master节点,在5台服务器上面运行这些Redis实例。
RedLock的实现步骤:如下
简化下步骤就是:
Redisson实现了redLock版本的锁,有兴趣的小伙伴,可以去了解一下哈~
参考与感谢
Reference
本文分享自微信公众号 - Java中文社群(javacn666)。
如有侵权,请联系 [email protected] 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。