题目描述
题解
随便bb
详细题解见
https://www.cnblogs.com/coldchair/p/11624979.html
https://blog.csdn.net/alan_cty/article/details/84557477
https://www.cnblogs.com/Iking123/p/11626041.html
这里讲讲自己发现的东西和一些细节
f[i][p][a]表示第i位以后(包括第i位)的最大值,a表示个位,在第i为进1的个位会变成什么
为什么要包括第i位呢,因为假设的进位不会影响到p,所以考虑上包括的情况都一样
而且可以适应第i位不为0的情况,更严谨一些
g[i][p][x][a]的x表示第i位放x后个位会变成什么,只需要进x次位就行了
当i=1时要特殊考虑(考虑能否放x)
至于f和g的取值是否重复,
把方程列出来后可以发现结果其实是存在原来的状态上的,所以不会重复
dp[i][j][p][a]表示dfs序为i,做到第j位的方案数
转移前缀和优化,可以直接把dp[i]设为原来的dp[1..i]
要考虑i=1和j=1
code
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define add(a,b) (a=(a+(b)%998244353)%998244353)
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
#define mod 998244353
using namespace std;
struct type{
int x,y;
} E[1001];
int a[1001][2];
int ls[501];
int f[501][10][10]; //f[i][p][a] p=max in [>=i] a=the first
int g[501][10][10][10]; //g[i][p][x][a]
int dp[501][501][10][10]; //dp[i][j][p][a]
int st[501];
int d[501];
int fa[501];
int N,A,n,K,I,i,j,k,l,len;
long long ans;
bool cmp(type a,type b)
{
return a.x<b.x || a.x==b.x && a.y>b.y;
}
void New(int x,int y)
{
++len;
a[len][0]=y;
a[len][1]=ls[x];
ls[x]=len;
}
void dfs(int Fa,int t)
{
int i;
fa[t]=Fa;
st[t]=++N;
for (i=ls[t]; i; i=a[i][1])
if (a[i][0]!=Fa)
dfs(t,a[i][0]);
}
void Dfs(int Fa,int t)
{
int i,j,k,l;
i=st[t];
fo(j,1,n)
{
fo(k,0,K-1)
{
fo(l,0,K-1)
dp[i][j][k][l]=dp[i-1][j][k][l];
}
}
fo(j,1,n)
{
fo(k,0,K-1)
{
fo(l,0,K-1)
{
if (j>1)
{
if (t>1)
add(dp[i][j-1][max(k,d[t])][g[j][k][d[t]][l]],dp[i-1][j][k][l]-dp[st[fa[t]]-1][j][k][l]);
else
add(dp[i][j-1][max(k,d[t])][g[j][k][d[t]][l]],dp[i-1][j][k][l]);
}
else
if (g[j][k][d[t]][l]>-1)
{
if (t>1)
add(ans,dp[i-1][j][k][l]-dp[st[fa[t]]-1][j][k][l]);
else
add(ans,dp[i-1][j][k][l]);
}
}
}
}
for (i=ls[t]; i; i=a[i][1])
if (a[i][0]!=Fa)
Dfs(t,a[i][0]);
}
int main()
{
freopen("buried.in","r",stdin);
freopen("buried.out","w",stdout);
scanf("%d%d",&n,&K);
fo(i,1,n)
scanf("%d",&d[i]);
fo(i,2,n)
{
scanf("%d%d",&j,&k);
E[++l]={j,k};
E[++l]={k,j};
}
sort(E+1,E+l+1,cmp);
fo(i,1,l)
New(E[i].x,E[i].y);
memset(f,255,sizeof(f));
memset(g,255,sizeof(g));
fo(i,0,K-1)
{
fo(j,0,K-1)
if (i|j)
{
k=j;
while (k<K)
k+=max(i,k);
f[2][i][j]=k%K;
}
}
fo(i,2,n-1)
{
fo(j,0,K-1)
{
fo(k,0,K-1)
if (j|k)
{
l=k;
fo(I,0,K-1)
if (f[i][max(j,I)][l]>-1)
l=f[i][max(j,I)][l];
else
break;
if (I==K)
f[i+1][j][k]=l;
}
}
}
fo(j,0,K-1)
{
fo(l,0,K-1)
if (j|l)
{
A=l;
while (A<K)
{
g[1][j][A][l]=A;
A+=max(j,A);
}
}
}
fo(i,2,n)
{
fo(j,0,K-1)
{
fo(l,0,K-1)
if (j|l)
{
A=l;
fo(k,0,K-1)
if (A>-1)
{
g[i][j][k][l]=A;
A=f[i][max(j,k)][A];
}
else
break;
}
}
}
fo(i,1,n)
dp[0][i][0][1]=1;
N=0;
dfs(0,1);
Dfs(0,1);
printf("%lld\n",(ans+mod)%mod);
fclose(stdin);
fclose(stdout);
return 0;
}