我正在研究时间序列,发现熊猫数据框中的行为非常奇怪
以下代码在索引不是时间序列时有效
import pandas as pd
df = pd.DataFrame({"a":[1,2,3], "b":[31,41,51],"c":[31,52,23]}, index=["z", "y", "x"])
df1 = pd.DataFrame({"a":[41,55,16]}, index=["w", "v", "u"])
df2 = pd.DataFrame({"b":[24,3,57]}, index=["w", "v", "u"])
df3 = pd.DataFrame({"c":[111,153,123]}, index=["w", "v", "u"])
df = df.append(df1)
dfx.ix[df2.index, "b"] = df2
df
的输出: a b c
z 1 31 31
y 2 41 52
x 3 51 23
w 41 24 NaN
v 55 3 NaN
u 16 57 NaN
但是,当有
datetime64[ns]
索引或大小太大时,这将不起作用此外,当有
datetime64[ns]
索引时,以下命令也可以使用df = df.append(df1)
df["b"][df2.index] = df2
为什么会这样呢?
最佳答案
您可以尝试fillna
:
df = df.append(df1)
print df.fillna(df2)
a b c
z 1 31 31
y 2 41 52
x 3 51 23
w 41 24 NaN
v 55 3 NaN
u 16 57 NaN
我用
Datatimeindex
测试了它,效果很好:import pandas as pd
df = pd.DataFrame({"a":[1,2,3], "b":[31,41,51],"c":[31,52,23]}, index=["z", "y", "x"])
df.index = pd.date_range('20160101',periods=3,freq='T')
df1 = pd.DataFrame({"a":[41,55,16]}, index=["w", "v", "u"])
df1.index = pd.date_range('20160104',periods=3,freq='T')
df2 = pd.DataFrame({"b":[24,3,57]}, index=["w", "v", "u"])
df2.index = pd.date_range('20160104',periods=3,freq='T')
df3 = pd.DataFrame({"c":[111,153,123]}, index=["w", "v", "u"])
df3.index = pd.date_range('20160104',periods=3,freq='T')
df = df.append(df1)
print df
a b c
2016-01-01 00:00:00 1 31 31
2016-01-01 00:01:00 2 41 52
2016-01-01 00:02:00 3 51 23
2016-01-04 00:00:00 41 NaN NaN
2016-01-04 00:01:00 55 NaN NaN
2016-01-04 00:02:00 16 NaN NaN
print df.fillna(df2)
a b c
2016-01-01 00:00:00 1 31 31
2016-01-01 00:01:00 2 41 52
2016-01-01 00:02:00 3 51 23
2016-01-04 00:00:00 41 24 NaN
2016-01-04 00:01:00 55 3 NaN
2016-01-04 00:02:00 16 57 NaN
df.ix[df2.index, "b"] = df2
print df
a b c
2016-01-01 00:00:00 1 31 31
2016-01-01 00:01:00 2 41 52
2016-01-01 00:02:00 3 51 23
2016-01-04 00:00:00 41 24 NaN
2016-01-04 00:01:00 55 3 NaN
2016-01-04 00:02:00 16 57 NaN
关于python - 在 Pandas 数据框中附加问题的时间序列,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/35520263/