我正在研究时间序列,发现熊猫数据框中的行为非常奇怪

以下代码在索引不是时间序列时有效

import pandas as pd
df = pd.DataFrame({"a":[1,2,3], "b":[31,41,51],"c":[31,52,23]}, index=["z", "y", "x"])
df1 = pd.DataFrame({"a":[41,55,16]}, index=["w", "v", "u"])
df2 = pd.DataFrame({"b":[24,3,57]}, index=["w", "v", "u"])
df3 = pd.DataFrame({"c":[111,153,123]}, index=["w", "v", "u"])
df = df.append(df1)
dfx.ix[df2.index, "b"] = df2


df的输出:

    a   b   c
z   1  31  31
y   2  41  52
x   3  51  23
w  41  24 NaN
v  55   3 NaN
u  16  57 NaN


但是,当有datetime64[ns]索引或大小太大时,这将不起作用

此外,当有datetime64[ns]索引时,以下命令也可以使用

df = df.append(df1)
df["b"][df2.index] = df2


为什么会这样呢?

最佳答案

您可以尝试fillna

df = df.append(df1)
print df.fillna(df2)
    a   b   c
z   1  31  31
y   2  41  52
x   3  51  23
w  41  24 NaN
v  55   3 NaN
u  16  57 NaN


我用Datatimeindex测试了它,效果很好:

import pandas as pd

df = pd.DataFrame({"a":[1,2,3], "b":[31,41,51],"c":[31,52,23]}, index=["z", "y", "x"])
df.index = pd.date_range('20160101',periods=3,freq='T')

df1 = pd.DataFrame({"a":[41,55,16]}, index=["w", "v", "u"])
df1.index = pd.date_range('20160104',periods=3,freq='T')

df2 = pd.DataFrame({"b":[24,3,57]}, index=["w", "v", "u"])
df2.index = pd.date_range('20160104',periods=3,freq='T')

df3 = pd.DataFrame({"c":[111,153,123]}, index=["w", "v", "u"])
df3.index = pd.date_range('20160104',periods=3,freq='T')




df = df.append(df1)
print df
                      a   b   c
2016-01-01 00:00:00   1  31  31
2016-01-01 00:01:00   2  41  52
2016-01-01 00:02:00   3  51  23
2016-01-04 00:00:00  41 NaN NaN
2016-01-04 00:01:00  55 NaN NaN
2016-01-04 00:02:00  16 NaN NaN

print df.fillna(df2)
                      a   b   c
2016-01-01 00:00:00   1  31  31
2016-01-01 00:01:00   2  41  52
2016-01-01 00:02:00   3  51  23
2016-01-04 00:00:00  41  24 NaN
2016-01-04 00:01:00  55   3 NaN
2016-01-04 00:02:00  16  57 NaN

df.ix[df2.index, "b"] = df2
print df
                      a   b   c
2016-01-01 00:00:00   1  31  31
2016-01-01 00:01:00   2  41  52
2016-01-01 00:02:00   3  51  23
2016-01-04 00:00:00  41  24 NaN
2016-01-04 00:01:00  55   3 NaN
2016-01-04 00:02:00  16  57 NaN

关于python - 在 Pandas 数据框中附加问题的时间序列,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/35520263/

10-12 22:23