我有两个日期列“StartDate”和“EndDate”。我想查找从2019年12月起这两个日期之间的每个月的天数,并向前忽略2019年之前的任何几个月进行计算。每行的StartDate和EndDate可以跨越2年,其中月份重叠,并且Date列也可以为空。
样本数据:
df = {'Id': ['1','2','3','4','5','6','7', '8'],
'Item': ['A','B','C','D','E','F','G', 'H'],
'StartDate': ['2019-12-10', '2019-12-01', '2019-10-01', '2020-01-01', '2019-03-01','2019-03-01','2019-10-01', ''],
'EndDate': ['2020-02-21' ,'2020-01-01','2020-08-31','2020-01-30','2019-12-31','2019-12-31','2020-08-31', '']
}
df = pd.DataFrame(df,columns= ['Id', 'Item','StartDate','EndDate'])
预期O/P:
下面的解决方案部分起作用。
df['StartDate'] = pd.to_datetime(df['StartDate'])
df['EndDate'] = pd.to_datetime(df['EndDate'])
def days_of_month(x):
s = pd.date_range(*x, freq='D').to_series()
return s.resample('M').count().rename(lambda x: x.month)
df1 = df[['StartDate', 'EndDate']].apply(days_of_month, axis=1).fillna(0)
df_final = df[['StartDate', 'EndDate']].join([df['StartDate'].dt.year.rename('Year'), df1])
最佳答案
尝试这个:
df.join(df.dropna(axis=0,how='any')
.apply(lambda x: pd.date_range(x['StartDate'],x['EndDate'], freq='D')
.to_frame().resample('M').count().loc['2019-12-01':].unstack(), axis=1)[0].fillna(0))
输出:
Id Item StartDate EndDate 2019-12-31 00:00:00 2020-01-31 00:00:00 2020-02-29 00:00:00 2020-03-31 00:00:00 2020-04-30 00:00:00 2020-05-31 00:00:00 2020-06-30 00:00:00 2020-07-31 00:00:00 2020-08-31 00:00:00
0 1 A 2019-12-10 2020-02-21 22.0 31.0 21.0 0.0 0.0 0.0 0.0 0.0 0.0
1 2 B 2019-12-01 2020-01-01 31.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 3 C 2019-10-01 2020-08-31 31.0 31.0 29.0 31.0 30.0 31.0 30.0 31.0 31.0
3 4 D 2020-01-01 2020-01-30 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 5 E 2019-03-01 2019-12-31 31.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 6 F 2019-03-01 2019-12-31 31.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 7 G 2019-10-01 2020-08-31 31.0 31.0 29.0 31.0 30.0 31.0 30.0 31.0 31.0
7 8 H NaT NaT NaN NaN NaN NaN NaN NaN NaN NaN NaN
关于python - python如何查找从2019年12月开始的每个月的天数,并在两个日期列之间转发,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/59274898/