我试图在Python中计算以P为模的数百位数的立方根,但失败了。

我找到了Tonelli-Shanks算法的代码,据说该代码很容易从平方根修改为立方根,但这使我难以理解。我搜寻了网络和数学库以及几本书,但都没有用。代码会很棒,用简单的英语解释的算法也会很棒。

这是用于查找平方根的Python(2.6?)代码:

def modular_sqrt(a, p):
    """ Find a quadratic residue (mod p) of 'a'. p
        must be an odd prime.

        Solve the congruence of the form:
            x^2 = a (mod p)
        And returns x. Note that p - x is also a root.

        0 is returned is no square root exists for
        these a and p.

        The Tonelli-Shanks algorithm is used (except
        for some simple cases in which the solution
        is known from an identity). This algorithm
        runs in polynomial time (unless the
        generalized Riemann hypothesis is false).
    """
    # Simple cases
    #
    if legendre_symbol(a, p) != 1:
        return 0
    elif a == 0:
        return 0
    elif p == 2:
        return n
    elif p % 4 == 3:
        return pow(a, (p + 1) / 4, p)

    # Partition p-1 to s * 2^e for an odd s (i.e.
    # reduce all the powers of 2 from p-1)
    #
    s = p - 1
    e = 0
    while s % 2 == 0:
        s /= 2
        e += 1

    # Find some 'n' with a legendre symbol n|p = -1.
    # Shouldn't take long.
    #
    n = 2
    while legendre_symbol(n, p) != -1:
        n += 1

    # Here be dragons!
    # Read the paper "Square roots from 1; 24, 51,
    # 10 to Dan Shanks" by Ezra Brown for more
    # information
    #

    # x is a guess of the square root that gets better
    # with each iteration.
    # b is the "fudge factor" - by how much we're off
    # with the guess. The invariant x^2 = ab (mod p)
    # is maintained throughout the loop.
    # g is used for successive powers of n to update
    # both a and b
    # r is the exponent - decreases with each update
    #
    x = pow(a, (s + 1) / 2, p)
    b = pow(a, s, p)
    g = pow(n, s, p)
    r = e

    while True:
        t = b
        m = 0
        for m in xrange(r):
            if t == 1:
                break
            t = pow(t, 2, p)

        if m == 0:
            return x

        gs = pow(g, 2 ** (r - m - 1), p)
        g = (gs * gs) % p
        x = (x * gs) % p
        b = (b * g) % p
        r = m

def legendre_symbol(a, p):
    """ Compute the Legendre symbol a|p using
        Euler's criterion. p is a prime, a is
        relatively prime to p (if p divides
        a, then a|p = 0)

        Returns 1 if a has a square root modulo
        p, -1 otherwise.
    """
    ls = pow(a, (p - 1) / 2, p)
    return -1 if ls == p - 1 else ls

资料来源:Computing modular square roots in Python

最佳答案

稍后添加注释:在Tonelli-Shanks算法中,此处假定p为质数。通常,如果我们能够快速计算出模平方根来合成模数,那么我们就可以快速分解出数。抱歉,假设您知道p为质数。

参见herehere。请注意,模数p是具有p个元素的有限域。

编辑:也请参见this(这是那些论文的祖父。)

最简单的部分是当p = 2 mod 3时,一切都是一个立方体,而a的立方体根仅是a**((2*p-1)/3) %p
补充:这是除了primes 1 mod 9以外的所有代码。我将在本周末尝试解决。如果没有其他人先

#assumes p prime returns cube root of a mod p
def cuberoot(a, p):
    if p == 2:
        return a
    if p == 3:
        return a
    if (p%3) == 2:
        return pow(a,(2*p - 1)/3, p)
    if (p%9) == 4:
        root = pow(a,(2*p + 1)/9, p)
        if pow(root,3,p) == a%p:
            return root
        else:
            return None
    if (p%9) == 7:
        root = pow(a,(p + 2)/9, p)
        if pow(root,3,p) == a%p:
            return root
        else:
            return None
    else:
        print "Not implemented yet. See the second paper"

关于python - 立方根模P-我该怎么做?,我们在Stack Overflow上找到一个类似的问题:https://stackoverflow.com/questions/6752374/

10-11 21:23